题目描述

输入两个正整数a和b,求a^b的因子和。结果太大,只要输出它对9901的余数。

输入输出格式

输入格式:

仅一行,为两个正整数a和b(0≤a,b≤50000000)。

输出格式:

a^b的因子和对9901的余数。

输入输出样例

输入样例#1:

2 3
输出样例#1:

15
看似不可做,其实非常简单
任意正整数都有且只有一种方式写出其素因子的乘积表达式。

A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)
其中 pi 均为素数
那么A^B=(p1^(k1*B))*(p2^(k2*B))*(p3^(k3*B))*....*(pn^(kn*B))
显然ans=∑i1i2.....∑ik(p1^i1)*(p2^i2)*.....(pk^ik)
   =i1(p1^i1)i2(p2^i2).....∑ik(pk^ik) 但是k*B最大可以达到30000×50000000(极限估算)
这里我们运用指数取模的方法,因为模数很小
根据费马小定理,我们证出:
a^x≡a^(x%μ(p)) (mod p) μ(p)=9900,p=9901
这样我们发现,i(p^i)其实存在长度为μ(p)的循环节
这样,就算k*B再大,我们也可以通过O(μ(p))的求和处理算出循环节
然后就可以直接算出i(p^i)

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
lol A,B,pri[],cnt[],ans,pw[],tot;
int main()
{lol x,i,j;
cin>>A>>B;
x=A;
for (i=;i*i<=A;i++)
{
if (x%i==)
{
pri[++tot]=i;
while (x%i==)
{
cnt[tot]++;
x/=i;
}
}
}
if (x!=)
{
pri[++tot]=x;
cnt[tot]=;
}
for (i=;i<=tot;i++)
cnt[i]*=B;
ans=;
for (i=tot;i>=;i--)
{
pw[]=;
lol s=,as=;
for (j=;j<=&&j<=cnt[i];j++)
{
pw[j]=pw[j-]*pri[i]%;
s=(s+pw[j])%;
if (cnt[i]%==j)
as=s;
}
ans=(ans*((cnt[i]/)*s+as)%)%;
}
cout<<ans;
}

洛谷P1593 因子和的更多相关文章

  1. 洛谷 P1593 因子和

    https://www.luogu.org/problemnew/show/P1593#sub 利用约数和定理:可以去看一下公式第13条 然后这个题目的话,要求$a^b$,那么我们首先可以先将a分解然 ...

  2. 洛谷 - P1593 - 因子和 - 费马小定理

    类似的因为模数比较小的坑还有卢卡斯定理那道,也是有时候逆元会不存在,因为整除了.使用一些其他方法避免通过逆元. https://www.luogu.org/fe/problem/P1593 有坑.一定 ...

  3. 洛谷 P1593 因子和 || Sumdiv POJ - 1845

    以下弃用 这是一道一样的题(poj1845)的数据 没错,所有宣称直接用逆元/快速幂+费马小定理可做的,都会被hack掉(包括大量题解及AC代码) 什么原因呢?只是因为此题的模数太小了...虽然990 ...

  4. 洛谷 P1593 因子和 题解

    题面 这道题在数学方面没什么难度: 对于每一个正整数n: 质因数分解后可以写成n=a1^k1a2^k2……*ai^ki 所求的数的因数和f(n)就等于f(n)=(1+a1+a1^2+……+a1^k1) ...

  5. 洛谷P1244 青蛙过河 DP/思路

    又是一道奇奇怪怪的DP(其实是思路题). 原文戳>>https://www.luogu.org/problem/show?pid=1244<< 这题的意思给的挺模糊,需要一定的 ...

  6. [洛谷P3158] [CQOI2011]放棋子

    洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...

  7. 洛谷P3938 斐波那契

    题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...

  8. 【洛谷2617_BZOJ1901】Dynamic Rankings(树套树)

    题目: 洛谷 2617 BZOJ 1901 是权限题,\(n=10^4\) ,内存 128 MB :洛谷 2617 \(n=10^5\) ,内存 1024 MB ,数据比较坑. 分析: 蒟蒻初学树套树 ...

  9. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

随机推荐

  1. oracle导入dmp文件的2种方法

    使用imp.impdp方式导入数据 1.使用imp导入数据 打开cmd窗口,然后直接敲入一下命令即可,需要注意的是,要事先把dmp文件放到正确的路径中去 imp yx_base/@yx_192. fi ...

  2. 福州大学W班-助教总结

    开学初对自己的期望 在即将到来的学期前,我希望我可以做到以下几点: 1.多参与同学的课程设计,并提出自己的见解 2.不断提高个人的专业技能,活到老学到老 3.能够及时对同学的博客进行评论,并给出有用的 ...

  3. Alpha第四天

    Alpha第四天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...

  4. 学号:201621123032 《Java程序设计》第11周学习总结

    1:本周学习总结 1.1.:以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2:书面作业 2.1.: 源代码阅读:多线程程序BounceThread 1.1: BallRunnable类有什 ...

  5. 2018上C语言程序设计(高级)作业- 第2次作业

    作业要求一 提交截图: 6-7: 6-8: 6-9: 7-1: 作业要求二 题目6-7删除字符中数字字符 1.设计思路: (1)第一步:本题要求是删除字符中的数字字符,我的主要思路是通过数组遍历若遇到 ...

  6. 【iOS】swift 保持代码优美的10个方法

    这篇Swift风格指南与你看到的其他的指南有所不同,此篇指南主要焦点集中在打印和Web展示的可读写上.我们创建此篇风格指南的目的,是为了让我们的图书.教程以及初学者套件中的代码保持优美和一致,即使我们 ...

  7. C++高效安全的运行时动态类型转换

    关键字:static_cast,dynamic_cast,fast_dynamic_cast,VS 2015. OS:Window 10. C++类之间类型转换有:static_cast.dynami ...

  8. javascript抛物投栏(抛物线实践)

    平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线.水平抛物线就是水平匀速,垂直加速的运动. 抛物线的性质:面内与一个定点F和一条定直线l 的距离相等的点的轨迹叫做抛物线. 定点F叫做抛物线的焦点. ...

  9. Ubuntu server 16.04 中文版 终端不能显示中文的解决办法探讨

    对于刚安装成功的Ubuntu server 16.04中文版,在终端显示中文的地方总是出现菱形的图标,看来该版本内置终端暂时不支持中文显示, 还是本人不知道具体操作配置,现通过百度查找以下几个解决方案 ...

  10. webapi 使用Autofac 开发经历

    2018/4/6 号 早上五点..被手机震动吵醒. 之后直接打开电脑,打算再加强下我自己的webapi这套东西. 虽然三年的工作经验接触了N多框架和各种风格的开发方式,但是让我自己来搞一套实在不会搞, ...