●HDU 5608 function
题链:
http://acm.hdu.edu.cn/showproblem.php?pid=5608
题解:
莫比乌斯反演,杜教筛
已知$$N^2-3N+2=\sum_{d|N} f(d)$$
多次询问,给出n,求f的前缀和S(n)。
把f函数卷上$I(x)=1$
那么有:
$$\sum_{i=1}^{n}f*l(i)=\sum_{i=1}^{n}l(i)S(\lfloor \frac{n}{i} \rfloor)$$
所以:
$$S(n)=\sum_{i=1}^{n}f*l(i)-\sum_{i=2}^{n}S(\lfloor \frac{n}{i} \rfloor)$$
又因为
$$\begin{aligned}
\sum_{i=1}^{n}f*l(i)&=\sum_{i=1}^{n}\sum_{d|i}f(d)l(\frac{i}{d})\\
&=\sum_{i=1}^{n}\sum_{d|i}f(d)\\
&=\sum_{i=1}^{n}(i^2-3i+2)\\
&=\frac{n(n+1)(2n+1)}{6}-\frac{3n(1+n)}{2}+2n\\
\end{aligned}$$
所以
$$S(n)=\frac{n(n+1)(2n+1)}{6}-\frac{3n(1+n)}{2}+2n-\sum_{i=2}^{n}S(\lfloor \frac{n}{i} \rfloor)$$
到此,就可以直接用杜教筛求解了,不过有点慢。
我们可以先预处理出前$n^{\frac{2}{3}}$个的前缀和
令$F(N)=N^2-3N+2$,那么F就是f的约数和函数
(因为$F(N)=\sum_{d|N}f(d)$)
所以由莫比乌斯反演可知:
$$f(N)=\sum_{d|N}\mu(d)F(\frac{N}{d})$$
然后可以用$O(nlogn)$的复杂度先处理出一些前缀和,
然后再杜教筛即可。
代码:
#include<bits/stdc++.h>
#define DJM 1000000
using namespace std;
const int mod=1000000007;
struct Hash_Table{
#define Hmod 1425367
int org[DJM+50],val[DJM+50],nxt[DJM+50],head[Hmod],hnt;
Hash_Table(){hnt=1;}
void Push(int x,int v){
static int u; u=x%Hmod;
org[hnt]=x; val[hnt]=v; nxt[hnt]=head[u]; head[u]=hnt++;
}
int Find(int x){
static int u; u=x%Hmod;
for(int i=head[u];i;i=nxt[i])
if(org[i]==x) return val[i];
return -1;
}
}H;
int mu[DJM+50],F[DJM+50],f[DJM+50];
void Sieve(){
static bool np[DJM+50];
static int prime[DJM+50],pnt;
mu[1]=1;
for(int i=2;i<=DJM;i++){
F[i]=(1ll*i*i-3*i+2+mod)%mod;
if(!np[i]) prime[++pnt]=i,mu[i]=-1;
for(int j=1;j<=pnt&&i<=DJM/prime[j];j++){
np[i*prime[j]]=1;
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else break;
}
}
for(int d=1;d<=DJM;d++)
for(int i=1;i*d<=DJM;i++)
f[i*d]=(1ll*f[i*d]+1ll*mu[d]*F[i]%mod+mod)%mod;
for(int i=1;i<=DJM;i++) f[i]=(1ll*f[i]+f[i-1])%mod;
}
int DJ_pf(int n){
static int inv6=166666668;
if(n<=DJM) return f[n];
if(H.Find(n)!=-1) return H.Find(n);
int ret=(1ll*n*(n+1)%mod*(2*n+1)%mod*inv6%mod-3ll*(1+n)*n/2%mod+2ll*n%mod+mod)%mod;
for(int i=2,last;i<=n;i=last+1){
last=n/(n/i);
ret=(1ll*ret-1ll*(last-i+1)*DJ_pf(n/i)%mod+mod)%mod;
}
H.Push(n,ret);
return ret;
}
int main(){
Sieve(); int Case,n;
for(scanf("%d",&Case);Case;Case--){
scanf("%d",&n);
printf("%d\n",DJ_pf(n));
}
return 0;
}
●HDU 5608 function的更多相关文章
- HDU 5608 function [杜教筛]
HDU 5608 function 题意:数论函数满足\(N^2-3N+2=\sum_{d|N} f(d)\),求前缀和 裸题-连卷上\(1\)都告诉你了 预处理\(S(n)\)的话反演一下用枚举倍数 ...
- HDU 5608 - function
HDU 5608 - function 套路题 图片来自: https://blog.csdn.net/V5ZSQ/article/details/52116285 杜教筛思想,根号递归下去. 先搞出 ...
- [HDU 5608]Function(莫比乌斯反演 + 杜教筛)
题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣Nf(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1Nf ...
- HDU 5608 function(莫比乌斯反演 + 杜教筛)题解
题意: 已知\(N^2-3N+2=\sum_{d|N}f(d)\),求\(\sum_{i=1}^nf(i) \mod 1e9+7\),\(n\leq1e9\) 思路: 杜教筛基础题? 很显然这里已经设 ...
- HDU 6038 - Function | 2017 Multi-University Training Contest 1
/* HDU 6038 - Function [ 置换,构图 ] 题意: 给出两组排列 a[], b[] 问 满足 f(i) = b[f(a[i])] 的 f 的数目 分析: 假设 a[] = {2, ...
- 洛谷P1464 Function HDU P1579 Function Run Fun
洛谷P1464 Function HDU P1579 Function Run Fun 题目描述 对于一个递归函数w(a,b,c) 如果a≤0 or b≤0 or c≤0就返回值11. 如果a> ...
- HDU 5875 Function 【倍增】 (2016 ACM/ICPC Asia Regional Dalian Online)
Function Time Limit: 7000/3500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total ...
- 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】
Function Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total ...
- HDU 5875 Function 优先队列+离线
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5875 Function Time Limit: 7000/3500 MS (Java/Others) ...
随机推荐
- tornado httpserver
# coding:utf-8 import tornado.web import tornado.ioloop import tornado.httpserver # 新引入httpserver模块 ...
- 团队作业4——第一次项目冲刺(Alpha版本)
第一天http://www.cnblogs.com/ThinkAlone/p/7861070.html 第二天http://www.cnblogs.com/ThinkAlone/p/7861191.h ...
- Python split()方法
Python split()方法 描述 Python split()通过指定分隔符对字符串进行切片,如果参数num 有指定值,则仅分隔 num 个子字符串 语法 split()方法语法: str.sp ...
- .NET Core/.NET之Stream简介
之前写了一篇C#装饰模式的文章提到了.NET Core的Stream, 所以这里尽量把Stream介绍全点. (都是书上的内容) .NET Core/.NET的Streams 首先需要知道, Syst ...
- Golang学习--平滑重启
在上一篇博客介绍TOML配置的时候,讲到了通过信号通知重载配置.我们在这一篇中介绍下如何的平滑重启server. 与重载配置相同的是我们也需要通过信号来通知server重启,但关键在于平滑重启,如果只 ...
- NFS PersistentVolume - 每天5分钟玩转 Docker 容器技术(151)
上一节我们介绍了 PV 和 PVC,本节通过 NFS 实践. 作为准备工作,我们已经在 k8s-master 节点上搭建了一个 NFS 服务器,目录为 /nfsdata: 下面创建一个 PV mypv ...
- Jenkins中展示HTML测试报告
背景:测试报告是用reportNG生成的,属于java自动化测试项目. 1) 安装插件 首先要安装HTML Publisher plugin,这个在插件管理里面搜索并安装即可,如下我已 ...
- 新概念英语(1-107)It's Too Small.
Lesson 107 It's too small. 太小了. Listen to the tape then answer this question. What kind of dress doe ...
- spring-oauth-server实践:授权方式1、2、3和授权方式4的token对象.authorities产生方式比较
授权方式1.2.3和授权方式4的token对象.authorities产生方式不同, 前者使用user_privillege构建, 后者直接使用oauth_client_details.authort ...
- OAuth2.0学习(1-13)oauth2.0 的概念:资源、权限(角色)和scope
mkk 关于资源的解释 : https://andaily.com/blog/?cat=19 resource用于将系统提供的各类资源进行分组管理, 每一个resource对应一个resource-i ...