题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=3529

题解:

莫比乌斯反演。

按题目的意思,令$f(i)$表示i的所有约数的和,就是要求:

$ANS=\sum f(gcd(i,j)),满足1 \leq i \leq n,1 \leq j \leq m,且 f(gcd(i,j))\leq a$


首先 $f(i)$ 应该还是比较好推的,利用其为积性函数的特点,可以在线性筛时完成计算。

令$g[k]$表示$gcd(i,j)=k$的$(i,j)$的对数

$G[k]$表示$gcd(i,j)=\lambda k$的$(i,j)$的对数,其值$G[k]=\lfloor \frac{n}{k} \rfloor \lfloor \frac{m}{k} \rfloor$

那么显然,$G[k]$为$g[k]$的倍数关系和函数,

即满足$G[k]=\sum_{k|d} g[d]$

则由莫比乌斯反演得:

$g[k]=\sum_{k|d}\mu(\frac{d}{k})G[d]$

$\quad\quad=\sum_{k|d}\mu(\frac{d}{k})\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor$

那么现在,直接从gcd的值的角度出发,ANS可以写成如下形式:

$ANS=\sum_{i=1}^{min(n,m)}f(i)g(i)$

$\quad\quad=\sum_{i=1}^{min(n,m)}f(i)\sum_{i|d}\mu(\frac{d}{i})\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor$

然后再化一下:

$\quad\quad=\sum_{d=1}^{min(n,m)}\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor\sum_{i|d}f(i)\mu(\frac{d}{i})$

令 $w(d)=\sum_{i|d}f(i)\mu(\frac{d}{i})$

那么$ANS=\sum_{d=1}^{min(n,m)}\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor w(d)$

如果不考虑题目中$f(gcd(i,j))\leq a$的限制

我们就可以枚举每个i,然后把其倍数$d=\lambda i$的$w(d)+=f(i)\mu(\frac{d}{i})$

以此计算出所有的w(d),复杂度为O(Nlog_2N)的。

然后那个求ANS的式子就可以运用向下取整的特性进行分块计算,就可以达到每个询问$O(\sqrt N)$的复杂度。

再来考虑有a的限制时的做法,(其实也不麻烦)

离线询问,按a从小到大排序,

同时把f(i)按从小到大排序,

一次遍历每个询问,并把$f(i)$小于当前询问的$a$的$i$按之前的做法:枚举倍数,加入对应的$w(d)$。

但是为了维护好前缀和,以便使用分块计算,

所以用树状数组维护,即把值$f(i)\mu(\frac{d}{i})$加入到树状数组里面。

然后同样的用树状数组查询前缀和就可以继续对当前询问进行分块计算了。

复杂度:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 100050
using namespace std;
struct BIT{
int val[MAXN],N;
void Reset(int n){memset(val,0,sizeof(val));N=n;}
int Lowbit(int p){return p&-p;}
void Modify(int p,int v){
while(p<=N) val[p]+=v,p+=Lowbit(p);
}
int Query(int p,int ret=0){
while(p) ret+=val[p],p-=Lowbit(p);
return ret;
}
}DT;
struct Question{
int n,m,a,id;
friend bool operator < (Question A,Question B){
return A.a<B.a;
}
}Q[MAXN];
int f[MAXN],fi[MAXN],mu[MAXN],ANS[MAXN];
bool cmp(int i,int j){
return f[i]<f[j];
}
void Sieve(){
static bool np[MAXN];
static int prime[MAXN],pnt,tmp;
mu[1]=f[1]=fi[1]=1;
for(int i=2;i<=100000;i++){
fi[i]=i;
if(!np[i]) prime[++pnt]=i,mu[i]=-1,f[i]=1+i;
for(int j=1;j<=pnt&&i<=100000/prime[j];j++){
np[i*prime[j]]=1;
if(i%prime[j]){
mu[i*prime[j]]=-mu[i];
f[i*prime[j]]=f[i]*f[prime[j]];
}
else{
mu[i*prime[j]]=0;
tmp=i; while(!(tmp%prime[j])) tmp=tmp/prime[j];
f[i*prime[j]]=f[i]*prime[j]+f[tmp];
}
if(i%prime[j]==0) break;
}
}
sort(fi+1,fi+100000+1,cmp);
}
int main(){
Sieve(); int Case,ret,mini,n,m;
scanf("%d",&Case);
DT.Reset(100000);
for(int i=1;i<=Case;i++)
scanf("%d%d%d",&Q[i].n,&Q[i].m,&Q[i].a),Q[i].id=i;
sort(Q+1,Q+Case+1);
for(int q=1,p=1;q<=Case;q++){
while(p<=100000&&f[fi[p]]<=Q[q].a){
for(int d=fi[p];d<=100000;d+=fi[p])
DT.Modify(d,f[fi[p]]*mu[d/fi[p]]);
p++;
}
ret=0; n=Q[q].n; m=Q[q].m; mini=min(n,m);
for(int i=1,last;i<=mini;i=last+1){
last=min(n/(n/i),m/(m/i));
ret+=(DT.Query(last)-DT.Query(i-1))*(n/i)*(m/i);
}
ANS[Q[q].id]=ret;
}
for(int i=1;i<=Case;i++)
printf("%d\n",ANS[i]&(int)((1ll<<31)-1));
return 0;
}

  

●BZOJ 3529 [Sdoi2014]数表的更多相关文章

  1. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  2. bzoj 3529 [Sdoi2014]数表(莫比乌斯反演+BIT)

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...

  3. 【刷题】BZOJ 3529 [Sdoi2014]数表

    Description 有一张n×m的数表,其第i行第j列(1<=i<=n,1<=j<=m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. In ...

  4. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  5. bzoj 3529: [Sdoi2014]数表

    #include<cstdio> #include<iostream> #include<algorithm> #define M 200009 //#define ...

  6. BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组

    $ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...

  7. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  8. 3529: [Sdoi2014]数表 - BZOJ

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...

  9. 【BZOJ】3529: [Sdoi2014]数表

    题意:求 $$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d|(i, j)} d 且 (\sum_{d|(i, j)} d)<=a$$ n, m<=1e5,q次 ...

随机推荐

  1. 4c语言的第0次作业

    1.你认为大学的学习生活.同学关系.师生关系应该是怎样? 我认为大学的学习生活应该是充实有意义的,有对学习的激情又有与伙伴相知的愉悦. 我认为同学关系应该是互相尊重,互相学习,坦诚相待. 我认为师生关 ...

  2. 团队开发---”我爱淘“校园二手书店 NABC分析

    本项目特点之一:可预订 N:对于一些抢手的书可以提前预定,避免学生买不到书 A:网上下单,通过手机便捷购物 B:使得订书更加方便快捷 C:二手书摊.网上书店 团队成员:杨广鑫.郭健豪.李明.郑涛

  3. WORK

    团队展示 队伍信息 队名:小狗队 队长:刘映华(201421122021) 队员:兰运良(201421122030).郭和水(201421122017) 团队项目描述 团队项目描述是基于之前的四则运算 ...

  4. android 检查软件是否有更新版本

    import java.net.HttpURLConnection; import java.net.URL; import java.util.HashMap; import com.yuxin.m ...

  5. 一个C&C++程序的生命历程

    翻了好多博客,内容星星点点,没找到我想要的,现在吸取大神精华,加上本人拙见,总结如下: 一个C或C++程序从你开始编写,到结束,整个过程,都做了些什么,请看下文: 先看大体的过程:看图: 我在这里主要 ...

  6. 限定 edittext 的 输入内容

    <EditText                 android:id="@+id/idNumber"                 style="@style ...

  7. 关于jvm的OutOfMemory:PermGen space异常的解决

    在做网校的时候,经常会在控制台会报出方法区的内存溢出,在网上找的方法,无非都是在tomcat的bin/catalina.bat文件中 设置jvm的堆的大小和方法区的大小,但是通过eclipse启动to ...

  8. Fluent Interface(流式接口)

    我最初接触这个概念是读自<<模式-工程化实现及扩展>>,另外有Martin fowler大师 所写http://martinfowler.com/bliki/FluentInt ...

  9. [Cerc2013]Magical GCD

    https://vjudge.net/problem/UVA-1642 题意:在一个序列中,找出一段连续的序列,使得长度*gcd最大 固定右端点,当左端点从左向右移动时,gcd不变或变大 gcd相同时 ...

  10. excel2003和excel2007文件的创建和读取

    excel2003和excel2007文件的创建和读取在项目中用的很多,首先我们要了解excel的常用组件和基本操作步骤. 常用组件如下所示: HSSFWorkbook excel的文档对象 HSSF ...