[BZOJ]1045 圆上的整点(HAOI2008)
数学题第二弹!
Description
求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。
Input
一个正整数r。
Output
整点个数。
Sample Input
4
Sample Output
4
HINT
r<=2000 000 000
Solution
小C不想写题解啊啊啊啊!!!!
题解在这里啊啊啊啊!!!!(看完记得投币!!!!)
我爱数学啊啊啊啊!!!!
开玩笑的,还是说一说题解吧。
相信如果你认真看完了上面那个视频的前25min,心里肯定已经有不下一万种解法了。
小C先口胡两句,你们意会就好。
题目要我们求的是以原点为圆心,半径为的圆经过了多少个整点。
所以我们只要把的所有因数的函数值相加的和乘上4就是答案。
请完全无视上面两行!完全无视!现在说正经的:
根据我们的知识储备,我们知道,对于圆。
将a进行质因数分解,得。
如果存在i使得且为奇数,那么该圆不经过任何整点。
否则答案就是。
根据上面的结论,由于题目中的a是完全平方数,所以不存在di为奇数的情况,因此必定经过整点。
所以我们只要把r质因数分解,挑出其中形如4k+1的质数,该质数的指数为d,对答案的贡献就是乘上2*d+1。
时间复杂度是质因数分解的。
#include <cstdio>
#include <algorithm>
#include <cstring>
#define MN 60005
using namespace std;
int n,ans,pin,pri[MN];
bool u[MN]; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} int main()
{
register int i,j,lt;
n=read(); ans=;
for (i=;1LL*i*i<=n;++i)
{
if (!u[i]) pri[++pin]=i;
for (j=;1LL*i*i*pri[j]*pri[j]<=n;++j)
{
u[i*pri[j]]=true;
if (i%pri[j]==) break;
}
}
while (n%pri[]==) n/=pri[];
for (i=;i<=pin;++i)
{
for (lt=;n%pri[i]==;++lt) n/=pri[i];
if (pri[i]%==) ans*=lt<<|;
}
if (n!=&&n%==) ans*=;
printf("%d",ans<<);
}
Last Word
我在B站学数学.jpg
开什么玩笑!B站本来就是优秀的在线学习网站!(小C口胡不下去了)
[BZOJ]1045 圆上的整点(HAOI2008)的更多相关文章
- BZOJ 1041 圆上的整点
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1041 题意:求圆x^2+y^2=r^2上的整点. 思路:由于对称性,我们只需要计算第一象 ...
- BZOJ 1041 圆上的整点 数学
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1041 题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整 ...
- bzoj 1041 圆上的整点 分类: Brush Mode 2014-11-11 20:15 80人阅读 评论(0) 收藏
这里先只考虑x,y都大于0的情况 如果x^2+y^2=r^2,则(r-x)(r+x)=y*y 令d=gcd(r-x,r+x),r-x=d*u^2,r+x=d*v^2,显然有gcd(u,v)=1且u&l ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
- bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...
- BZOJ(2) 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4966 Solved: 2258[Submit][Sta ...
随机推荐
- linux服务器操作系统,在相同环境下,哪个做lamp服务器更稳定点?哪个版本更稳定?
随着国内WEB服务越来越多,如何才能选择一个合适的linux服务器操作系统?在国内用的最多的好像是红帽子系列也就是red hat系列,但有些版本缺乏稳定性.新手在选择操作系统的时候最好只用偶数版本,还 ...
- LAMP 搭建
p { margin-bottom: 0.25cm; line-height: 120% } LAMP 搭建 承 Ubuntu 17.10.1安装, 定制. 参考 电子工业出版社, Ubuntu完美应 ...
- SQL Server 实现递归查询
基础数据/表结构 Sql 语句 ;With cte(id,pid,TName)As ( Select id,pid,TName Union All Select B.i ...
- emqtt 试用(七)追踪
追踪 EMQ 消息服务器支持追踪来自某个客户端(Client)的全部报文,或者发布到某个主题(Topic)的全部消息. 追踪客户端(Client): ./bin/emqttd_ctl trace cl ...
- Eclipse在线更新慢
一.去掉不必要的更新 打开Windows-Preferences -> Install/Update –> Available Software Sites,将不需要的更新停用 二.关闭自 ...
- zuul入门(5)zuul 处理异常
Object accessToken = request.getParameter("accessToken"); if(accessToken==null) { // 设置zuu ...
- python/MySQL练习题(二)
python/MySQL练习题(二) 查询各科成绩前三名的记录:(不考虑成绩并列情况) select score.sid,score.course_id,score.num,T.first_num,T ...
- js正则表达式入门以及常见用例
学习正则表达式的最好方法是从例子开始,理解例子之后再自己对例子进行修改,实验.下面给出了不少简单的例子,并对它们作了详细的说明. 假设你在一篇英文小说里查找hi,你可以使用正则表达式hi. 这几乎是最 ...
- Lua中table的实现-《Lua设计与实现》
本文来自<Lua设计与实现>的阅读笔记,推荐Lua学习者可以购买一本,深入浅出讲解lua的设计和实现原理,很赞,哈哈 Lua中对于表的设计,是基于数组和散列表,和其他语言不同,对于数组 ...
- [LeetCode] 4 Keys Keyboard 四键的键盘
Imagine you have a special keyboard with the following keys: Key 1: (A): Print one 'A' on screen. Ke ...