题链:

http://www.spoj.com/problems/NSUBSTR/

题解:

同届红太阳 ——WSY给出的后缀数组解法!!!

首先用倍增算法求出 sa[i],rak[i],hei[i]
然后维护出 L[i]数组表示:
在后缀数组中,排名最小(记其排名为 L[i])的后缀与排名i的后缀的LCP>=hei[i]
同理,R[i]数组表示:
在后缀数组中,排名最大(记其排名为 R[i])的后缀与排名i的后缀的LCP>=hei[i]
以上两个数组可以由单调栈 O(N)维护出来。

然后呢,令 ANS[i]表示 长度为 i且出现次数最多的子串 的出现次数。
(ANS[]的初值都为 1。)
ANS[hei[i]]=max(ANS[hei[i]],R[i]-L[i]+1)
最后再反着枚举一遍 ANS,用后面大的值更新前面小的值,即
ANS[i]=max(ANS[i],ANS[i+1])
显然啦,如果长度为 i的子串出现了ANS[i]次,那么长度小于i的也至少要出现 ANS[i]次。

总的时间复杂度 O(Nlog2N+N)
代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 250050
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
char S[MAXN];
int ANS[MAXN],sa[MAXN],rak[MAXN],hei[MAXN],L[MAXN],R[MAXN];
void build(int N,int M){
static int cc[MAXN],ta[MAXN],tb[MAXN],*x,*y,p,h;
x=ta; y=tb; h=0;
for(int i=0;i<M;i++) cc[i]=0;
for(int i=0;i<N;i++) cc[x[i]=S[i]]++;
for(int i=1;i<M;i++) cc[i]+=cc[i-1];
for(int i=N-1;i>=0;i--) sa[--cc[x[i]]]=i;
for(int k=1;p=0,k<N;k<<=1){
for(int i=N-k;i<N;i++) y[p++]=i;
for(int i=0;i<N;i++) if(sa[i]>=k) y[p++]=sa[i]-k;
for(int i=0;i<M;i++) cc[i]=0;
for(int i=0;i<N;i++) cc[x[y[i]]]++;
for(int i=1;i<M;i++) cc[i]+=cc[i-1];
for(int i=N-1;i>=0;i--) sa[--cc[x[y[i]]]]=y[i];
swap(x,y); y[N]=-1; x[sa[0]]=0; M=1;
for(int i=1;i<N;i++)
x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]?M-1:M++;
if(M>=N) break;
}
for(int i=0;i<N;i++) rak[sa[i]]=i;
for(int i=0,j;i<N;i++){
if(h) h--;
if(rak[i]){
j=sa[rak[i]-1];
while(S[i+h]==S[j+h]) h++;
}
hei[rak[i]]=h;
}
}
void pre(int N){
static int stk[MAXN],stp[MAXN],top;
top=0; stp[top]=0;
for(int i=0;i<N;i++){
while(top&&stk[top]>=hei[i]) top--;
L[i]=stp[top]; top++;
stk[top]=hei[i]; stp[top]=i;
}
top=N+1; stp[top]=N;
for(int i=N-1;i>=0;i--){
while(top!=N+1&&stk[top]>=hei[i]) top++;
R[i]=stp[top]-1; top--;
stk[top]=hei[i]; stp[top]=i;
}
}
int main()
{
scanf("%s",S);
int N=strlen(S);
build(N,300); pre(N);
for(int i=1;i<=N;i++) ANS[i]=1;
for(int i=0;i<N;i++) ANS[hei[i]]=max(ANS[hei[i]],R[i]-L[i]+1);
for(int i=N-1;i;i--) ANS[i]=max(ANS[i],ANS[i+1]);
for(int i=1;i<=N;i++) printf("%d\n",ANS[i]);
return 0;
}

●SPOJ 8222 NSUBSTR - Substrings(后缀数组)的更多相关文章

  1. ●SPOJ 8222 NSUBSTR–Substrings(后缀自动机)

    题链: http://www.spoj.com/problems/NSUBSTR/ 题解: 后缀自动机的水好深啊!懂不了相关证明,带着结论把这个题做了.看来这滩深水要以后再来了. 本题要用到一个叫 R ...

  2. SPOJ - DISUBSTR Distinct Substrings (后缀数组)

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  3. SPOJ DISUBSTR Distinct Substrings 后缀数组

    题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...

  4. ●SPOJ 8222 NSUBSTR–Substrings

    题链: http://www.spoj.com/problems/NSUBSTR/题解: 后缀自动机. 不难发现,对于自动机里面的一个状态s, 如果其允许的最大长度为maxs[s],其right集合的 ...

  5. SPOJ 8222 NSUBSTR - Substrings

    http://www.spoj.com/problems/NSUBSTR/ 题意: F(x)定义为字符串S中所有长度为x的子串重复出现的最大次数 输出F[1]~F[len(S)] 用字符串S构建后缀自 ...

  6. spoj 694. Distinct Substrings 后缀数组求不同子串的个数

    题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...

  7. 【刷题】SPOJ 8222 NSUBSTR - Substrings

    You are given a string S which consists of 250000 lowercase latin letters at most. We define F(x) as ...

  8. SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数

    题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...

  9. SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )

    题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...

随机推荐

  1. python 操作PostgreSQL

    pip install psycopg Python psycopg2 模块APIs 以下是psycopg2的重要的的模块例程可以满足Python程序与PostgreSQL数据库的工作. S.N. A ...

  2. scrapy 爬取当当网产品分类

    #spider部分import scrapy from Autopjt.items import AutopjtItem from scrapy.http import Request class A ...

  3. javascript参数传递中处理+号

    在传值过程中,如果+号也是值的一部分,那就需要对+号进行处理.否则+号会被过滤掉. 处理方式:只需要把js中传过去的+号替换成base64 编码 %2B encodeURI(str).replace( ...

  4. .net 小程序获取用户UnionID

    第一次写博客,写的不好多多海涵! 1.小程序获取UnionID的流程用code去换取session_key,然后去解密小程序获取到的那串字符! 话不多说,原理大家都懂!!!!!! 直接上代码 publ ...

  5. 验证码进阶(TensorFlow--基于卷积神经网络的验证码识别)

    本人的第一个深度学习实战项目,参考了网络上诸多牛人的代码,在此谢过,因时间久已,不记出处,就不一一列出,罪过罪过. 我的数据集是我用脚本在网页上扒的,标签是用之前写的验证码识别方法打的.大概用了400 ...

  6. js数组string对象api常用方法

    charAt() 方法可返回指定位置的字符. stringObject.charAt(index) indexOf() 方法可返回某个指定的字符串值在字符串中首次出现的位置. stringObject ...

  7. java 零基础搭建dubbo运行环境

    一:简介    以前做项目时,分布式环境都是其它同事在搭建,自己也没参与分布式环境搭建,只负责开发,由于近段时间工作重心转到android,java后台有一段时间没有接触了,刚好这几天有空,决定自己动 ...

  8. Web Api 过滤器之 AuthorizationFilter 验证过滤器

    该过滤器是最先执行的过滤器,即使把它放在最后 API [MyActionFilter] [MyExceptionFilter] [MyAuthorize] public void Get() { Tr ...

  9. 自动化服务部署(一):Linux下安装JDK

    自动化测试的主要目的是为了执行回归测试.当然,为了模拟真实的用户操作,一般都是在UAT或者生产环境进行回归测试. 为了尽量避免内网和外网解析对测试结果的影响,将自动化测试服务部署在外网的服务器是比较好 ...

  10. JavaScript中Array数组的方法

    查找: indexOf.lastIndexOf 迭代:every.filter.forEach.map.somereduce.reduceRight 用法: /* 1 查找方法: * arr.inde ...