●SPOJ 8222 NSUBSTR - Substrings(后缀数组)
题链:
http://www.spoj.com/problems/NSUBSTR/
题解:
同届红太阳 ——WSY给出的后缀数组解法!!!
首先用倍增算法求出 sa[i],rak[i],hei[i]
然后维护出 L[i]数组表示:
在后缀数组中,排名最小(记其排名为 L[i])的后缀与排名i的后缀的LCP>=hei[i]
同理,R[i]数组表示:
在后缀数组中,排名最大(记其排名为 R[i])的后缀与排名i的后缀的LCP>=hei[i]
以上两个数组可以由单调栈 O(N)维护出来。
然后呢,令 ANS[i]表示 长度为 i且出现次数最多的子串 的出现次数。
(ANS[]的初值都为 1。)
ANS[hei[i]]=max(ANS[hei[i]],R[i]-L[i]+1)
最后再反着枚举一遍 ANS,用后面大的值更新前面小的值,即
ANS[i]=max(ANS[i],ANS[i+1])
显然啦,如果长度为 i的子串出现了ANS[i]次,那么长度小于i的也至少要出现 ANS[i]次。
总的时间复杂度 O(Nlog2N+N)
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 250050
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
char S[MAXN];
int ANS[MAXN],sa[MAXN],rak[MAXN],hei[MAXN],L[MAXN],R[MAXN];
void build(int N,int M){
static int cc[MAXN],ta[MAXN],tb[MAXN],*x,*y,p,h;
x=ta; y=tb; h=0;
for(int i=0;i<M;i++) cc[i]=0;
for(int i=0;i<N;i++) cc[x[i]=S[i]]++;
for(int i=1;i<M;i++) cc[i]+=cc[i-1];
for(int i=N-1;i>=0;i--) sa[--cc[x[i]]]=i;
for(int k=1;p=0,k<N;k<<=1){
for(int i=N-k;i<N;i++) y[p++]=i;
for(int i=0;i<N;i++) if(sa[i]>=k) y[p++]=sa[i]-k;
for(int i=0;i<M;i++) cc[i]=0;
for(int i=0;i<N;i++) cc[x[y[i]]]++;
for(int i=1;i<M;i++) cc[i]+=cc[i-1];
for(int i=N-1;i>=0;i--) sa[--cc[x[y[i]]]]=y[i];
swap(x,y); y[N]=-1; x[sa[0]]=0; M=1;
for(int i=1;i<N;i++)
x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]?M-1:M++;
if(M>=N) break;
}
for(int i=0;i<N;i++) rak[sa[i]]=i;
for(int i=0,j;i<N;i++){
if(h) h--;
if(rak[i]){
j=sa[rak[i]-1];
while(S[i+h]==S[j+h]) h++;
}
hei[rak[i]]=h;
}
}
void pre(int N){
static int stk[MAXN],stp[MAXN],top;
top=0; stp[top]=0;
for(int i=0;i<N;i++){
while(top&&stk[top]>=hei[i]) top--;
L[i]=stp[top]; top++;
stk[top]=hei[i]; stp[top]=i;
}
top=N+1; stp[top]=N;
for(int i=N-1;i>=0;i--){
while(top!=N+1&&stk[top]>=hei[i]) top++;
R[i]=stp[top]-1; top--;
stk[top]=hei[i]; stp[top]=i;
}
}
int main()
{
scanf("%s",S);
int N=strlen(S);
build(N,300); pre(N);
for(int i=1;i<=N;i++) ANS[i]=1;
for(int i=0;i<N;i++) ANS[hei[i]]=max(ANS[hei[i]],R[i]-L[i]+1);
for(int i=N-1;i;i--) ANS[i]=max(ANS[i],ANS[i+1]);
for(int i=1;i<=N;i++) printf("%d\n",ANS[i]);
return 0;
}
●SPOJ 8222 NSUBSTR - Substrings(后缀数组)的更多相关文章
- ●SPOJ 8222 NSUBSTR–Substrings(后缀自动机)
题链: http://www.spoj.com/problems/NSUBSTR/ 题解: 后缀自动机的水好深啊!懂不了相关证明,带着结论把这个题做了.看来这滩深水要以后再来了. 本题要用到一个叫 R ...
- SPOJ - DISUBSTR Distinct Substrings (后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- SPOJ DISUBSTR Distinct Substrings 后缀数组
题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...
- ●SPOJ 8222 NSUBSTR–Substrings
题链: http://www.spoj.com/problems/NSUBSTR/题解: 后缀自动机. 不难发现,对于自动机里面的一个状态s, 如果其允许的最大长度为maxs[s],其right集合的 ...
- SPOJ 8222 NSUBSTR - Substrings
http://www.spoj.com/problems/NSUBSTR/ 题意: F(x)定义为字符串S中所有长度为x的子串重复出现的最大次数 输出F[1]~F[len(S)] 用字符串S构建后缀自 ...
- spoj 694. Distinct Substrings 后缀数组求不同子串的个数
题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...
- 【刷题】SPOJ 8222 NSUBSTR - Substrings
You are given a string S which consists of 250000 lowercase latin letters at most. We define F(x) as ...
- SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数
题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...
- SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )
题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...
随机推荐
- 冲刺NO.5
Alpha冲刺第五天 站立式会议 项目进展 今日项目完成内容主要包括了JS的学习,事务管理员模块与学生模块的完善与补充,并且开始编写信用信息管理模块和奖惩事务管理模块. 问题困难 前端部分的技术掌握的 ...
- DML数据操作语言之查询(二)
当我们查询出了N条记录之后 ,我们知道一共是几条记录,或者这些记录某一字段(列值)的最大值,最小值,平均值等,就可以使用聚合函数. 1.聚合函数 聚合函数会将null 排除在外.但是count(*)例 ...
- 让linux远程主机在后台运行脚本
后台挂起:python xxx.py & 在脚本命令后面加入"&"符号就可以后台运行.结束进程:kill -9 sidps -ef | grep ... 查询sid
- javascript中数组的深拷贝的方法
一.什么是浅拷贝 在js当中,我们常常遇到数组复制的的情况,许多人一般都会使用"="来直接把一个数组赋值给一个变量,如 var a=[1,2,3]; var b=a; consol ...
- WebApi 接口返回值类型详解 ( 转 )
使用过Webapi的园友应该都知道,Webapi的接口返回值主要有四种类型 void无返回值 IHttpActionResult HttpResponseMessage 自定义类型 此篇就围绕这四块分 ...
- 《深入实践Spring Boot》阅读笔记之三:核心技术源代码分析
刚关注的朋友,可以回顾前两篇文章: 基础应用开发 分布式应用开发 上篇文章总结了<深入实践Spring Boot>的第二部分,本篇文章总结第三部分,也是最后一部分.这部分主要讲解核心技术的 ...
- SpringCloud的服务注册中心(三) - 进一步了解 Eureka
一.服务治理参与者 服务注册中心: eureka-server 服务提供者:HELLO-SERVICE 服务消费者 :HELLO-CONSUMER 很多时候,客户端既是服务提供者又是服务消费者,-&g ...
- linux下的Shell编程(3)shell里的流程控制
if 语句 if 表达式如果条件命令组为真,则执行 then 后的部分.标准形式: if 判断命令,可以有很多个,真假取最后的返回值 then 如果前述为真做什么 [ # 方括号代表可选,别真打进去了 ...
- windows server 2016远程桌面进去,英文系统修改语言
由于我这边已经是改好了,以下截图来自中文版. 这边选了中文,然后点options. 选择:使该语言成为主要语言,保存. 会提示需要退出登录. 过一会重新登录,ok.
- python——函数
python--函数 1.介绍: 在过去的十年间,大家广为熟知的编程方法无非两种:面向对象和面向过程,其实,无论哪种,都是一种编程的规范或者是如何编程的方法论.而如今,一种更为古老的编程方式:函数式编 ...