Dalvik opcodes

Dalvik opcodes

Author: Gabor Paller

Vx values in the table denote a
Dalvik register. Depending on the instruction, 16, 256 or 64k registers
can be accessed. Operations on long and double values use two
registers, e.g. a double value addressed in the V0 register occupies
the V0 and V1 registers.

Boolean values are stored as 1 for true and 0 for false. Operations on
booleans are translated into integer operations.

All the examples are in hig-endian format, e.g. 0F00 0A00 is coded as
0F, 00, 0A, 00 sequence.

Note there are no explanation/example at some instructions. This means
that I have not seen that instruction "in the wild" and its
presence/name is only known from Android
opcode
constant list
.

Opcode
(hex)
Opcode name Explanation Example
00 nop No operation 0000 - nop
01 move vx,vy Moves the content of vy into vx.
Both registers must be in the first 256 register range.
0110 - move v0, v1
Moves v1 into v0.
02 move/from16 vx,vy Moves the content of vy into vx.
vy may be in the 64k register range while vx is one of the first 256
registers.
0200 1900 - move/from16 v0, v25
Moves v25 into v0.
03 move/16
04 move-wide
05 move-wide/from16 vx,vy Moves a long/double value from
vy to vx. vy may be in the 64k register range while wx is one of the
first 256 registers.
0516 0000 - move-wide/from16
v22, v0
Moves v0 into v22.
06 move-wide/16
07 move-object vx,vy Moves the object reference from
vy to vx.
0781 - move-object v1, v8
Moves the object reference in v8 to v1.
08 move-object/from16 vx,vy Moves the object reference from
vy to vx, vy can address 64k registers and vx can address 256 registers.
0801 1500 - move-object/from16
v1, v21
Move the object reference in v21 to v1.
09 move-object/16
0A move-result vx Move the result value of the
previous method invocation into vx.
0A00 - move-result v0
Move the return value of a previous method invocation into v0.
0B move-result-wide vx Move the long/double result
value of the previous method invocation into vx,vx+1.
0B02 - move-result-wide v2
Move the long/double result value of the previous method invocation
into v2,v3.
0C move-result-object vx Move the result object reference
of the previous method invocation into vx.
0C00 - move-result-object v0
0D move-exception vx Move the exception object
reference thrown during a method invocation into vx.
0D19 - move-exception v25
0E return-void Return without a return value 0E00 - return-void
0F return vx Return with vx return value 0F00 - return v0
Returns with return value in v0.

10 return-wide vx Return with double/long result
in vx,vx+1.
1000 - return-wide v0
Returns with a double/long value in v0,v1.
11 return-object vx Return with vx object reference
value.
1100 - return-object v0
Returns with object reference value in v0
12 const/4 vx,lit4 Puts the 4 bit constant into vx 1221 - const/4 v1, #int2
Moves literal 2 into v1. The destination register is in the lower 4 bit
in the second byte, the literal 2 is in the higher 4 bit.
13 const/16 vx,lit16 Puts the 16 bit constant into vx 1300 0A00 - const/16 v0, #int 10
Puts the literal constant of 10 into v0.
14 const vx, lit32 Puts the integer constant into vx 1400 4E61 BC00 - const v0,
#12345678 // #00BC614E
Moves literal 12345678 into v0.
15 const/high16 v0, lit16 Puts the 16 bit constant into
the topmost bits of the register. Used to initialize float values.
1500 2041 - const/high16 v0,
#float 10.0 // #41200000
Moves the floating literal of 10.0 into v0. The 16 bit literal in the
instruction carries the top 16 bits of the floating point number.
16 const-wide/16 vx, lit16 Puts the integer constant into
vx and vx+1 registers, expanding the integer constant into a long
constant..
1600 0A00 - const-wide/16 v0,
#long 10
Moves literal 10 into v0 and v1 registers.
17 const-wide/32 vx, lit32 Puts the 32 bit constant into vx
and vx+1 registers, expanding the integer constant into a long constant.
1702 4e61 bc00 - const-wide/32
v2, #long 12345678 // #00bc614e
Puts #12345678 into v2 and v3 registers.
18 const-wide vx, lit64 Puts the 64 bit constant into vx
and vx+1 registers.
1802 874b 6b5d 54dc 2b00-
const-wide v2, #long 12345678901234567 // #002bdc545d6b4b87
Puts #12345678901234567 into v2 and v3 registers.
19 const-wide/high16 vx,lit16 Puts the 16 bit constant into
the highest 16 bit of vx and vx+1 registers. Used to initialize double
values.
1900 2440 - const-wide/high16
v0, #double 10.0 // #402400000
Puts the double constant of 10.0 into v0 register.
1A const-string vx,string_id Puts reference to a string
constant identified by string_id into vx.
1A08 0000 - const-string v8, ""
// string@0000
Puts reference to string@0000 (entry #0 in the string table) into v8.
1B const-string-jumbo
1C const-class vx,type_id Moves the class object of a
class identified by type_id (e.g. Object.class) into vx.
1C00 0100 - const-class v0,
Test3 // type@0001
Moves reference to Test3.class (entry#1 in the type id table) into
1D monitor-enter vx Obtains the monitor of the
object referenced by vx.
1D03 - monitor-enter v3
Obtains the monitor of the object referenced by v3.
1E monitor-exit Releases the monitor of the
object referenced by vx.
1E03 - monitor-exit v3
Releases the monitor of the object referenced by v3.
1F check-cast vx, type_id Checks whether the object
reference in vx can be cast to an instance of a class referenced by
type_id. Throws ClassCastException if the cast is not possible,
continues execution otherwise.
1F04 0100 - check-cast v4, Test3
// type@0001
Checks whether the object reference in v4 can be cast to type@0001
(entry #1 in the type id table)
20 instance-of vx,vy,type_id Checks whether vy is instance of
a class identified by type_id. Sets vx non-zero if it is, 0 otherwise.
2040 0100 - instance-of v0, v4,
Test3 // type@0001
Checks whether the object reference in v4 is an instance of type@0001
(entry #1 in the type id table). Sets v0 to non-zero if v4 is instance
of Test3, 0 otherwise.
21 array-length vx,vy Calculates the number of
elements of the array referenced by vy and puts the length value into
vx.
2111 - array-length v1, v1
Calculates the number of elements of the array referenced by v1 and
puts the result into v1.
22 new-instance vx,type Instantiates an object type and
puts the reference of the newly created instance into vx.
2200 1500 - new-instance v0,
java.io.FileInputStream // type@0015
Instantiates type@0015 (entry #15H in the type table) and puts its
reference into v0.
23 new-array vx,vy,type_id Generates a new array of type_id
type and vy element size and puts the reference to the array into vx.
2312 2500 - new-array v2, v1,
char[] // type@0025
Generates a new array of type@0025 type and v1 size and puts the
reference to the new array into v2.
24 filled-new-array
{parameters},type_id
Generates a new array of type_id
and fills it with the parameters5. Reference to the newly
generated array can be obtained by a move-result-object instruction,
immediately following the filled-new-array instruction.
2420 530D 0000 -
filled-new-array {v0,v0},[I // type@0D53
Generates a new array of type@0D53. The array's size will be 2 and both
elements will be filled with the contents of v0 register.
25 filled-new-array-range
{vx..vy},type_id
Generates a new array of type_id
and fills it with a range of parameters. Reference to the newly
generated array can be obtained by a
move-result-object instruction, immediately following the
filled-new-array instruction.
2503 0600 1300 -
filled-new-array/range
{v19..v21}, [B // type@0006
Generates a new array of type@0D53. The array's size will be 3 and the
elements will be filled using the v19,v20 and v21 registers4.
26 fill-array-data
vx,array_data_offset
Fills the array referenced by vx
with the static data. The location of the static data is the sum
of  the position of the current instruction and the offset
2606 2500 0000 - fill-array-data
v6, 00e6 // +0025
Fills the array referenced by v0 with the static data at current
instruction+25H words location. The offset is expressed as a 32-bit
number. The static data is stored in the following format:
0003 // Table type: static array data
0400 // Byte per array element (in this case, 4 byte integers)
0300 0000 // Number of elements in the table
0100 0000  // Element #0: integer 1
0200 0000 // Element #1: integer 2
0300 0000 // Element #2: integer3
27 throw vx Throws an exception object. The
reference of the exception object is in vx.
2700 - throw v0
Throws an exception. The exception object reference is in v0.
28 goto target Unconditional jump by short
offset2.
28F0 - goto 0005 // -0010
Jumps to current position-16 words (hex 10). 0005 is the label of the
target instruction.
29 goto/16 target Unconditional jump by 16 bit
offset2.
2900 0FFE - goto/16 002f // -01f1
Jumps to the current position-1F1H words. 002F is the label of the
target instruction.
2A goto/32 target
2B packed-switch vx,table Implements a switch statement
where the case constants are close to each other. The instruction uses
an index table. vx indexes into this table to find the offset of the
instruction for a particular case. If vx falls out of the index table,
the execution continues on the next instruction (default case).
2B02 0C00 0000 - packed-switch
v2, 000c // +000c
Execute a packed switch according to the switch argument in v2. The
position of the index table is at current instruction+0CH words. The
table looks like the following:
0001 // Table type: packed switch table
0300 // number of elements
0000 0000 // element base
0500 0000  0: 00000005 // case 0: +00000005
0700 0000  1: 00000007 // case 1: +00000007
0900 0000  2: 00000009 // case 2: +00000009
2C sparse-switch vx,table Implements a switch statement
with sparse case table. The instruction uses a lookup table with case
constants and offsets for each case constant. If there is no match in
the table, execution continues on the next instruction (default case).
2C02 0c00 0000 - sparse-switch
v2, 000c // +000c
Execute a sparse switch according to the switch argument in v2. The
position of the lookup table is at current instruction+0CH words. The
table looks like the following.
0002 // Table type: sparse switch table
0300 // number of elements
9cff ffff // first case: -100
fa00 0000 // second case constant: 250
e803 0000 // third case constant: 1000
0500 0000 // offset for the first case constant: +5
0700 0000 // offset for the second case constant: +7
0900 0000 // offset for the third case constant: +9
2D cmpl-float Compares the float values in vy
and vz and sets the integer value in vx accordingly3
2D00 0607 - cmpl-float v0, v6, v7
Compares the float values in v6 and v7 then sets v0 accordingly. NaN
bias is less-than, the instruction will return -1 if any of the
parameters is NaN.
2E cmpg-float vx, vy, vz Compares the float values in vy
and vz and sets the integer value in vx accordingly3.
2E00 0607 - cmpg-float v0, v6, v7
Compares the float values in v6 and v7 then sets v0 accordingly. NaN
bias is greater-than, the instruction will return 1 if any of the
parameters is NaN.
2F cmpl-double vx,vy,vz Compares the double values in vy
and vz2 and sets the integer value in vx accordingly3.

2F19 0608 - cmpl-double v25, v6,
v8
Compares the double values in v6,v7 and v8,v9 and sets v25 accordingly.
NaN bias is less-than, the instruction will return -1 if any of the
parameters is NaN.
30 cmpg-double vx, vy, vz Compares the double values in vy
and vz2 and sets the integer value in vx accordingly3.
3000 080A - cmpg-double v0, v8,
v10
Compares the double values in v8,v9 and v10,v11 then sets v0
accordingly. NaN bias is greater-than, the instruction will return 1 if
any of the parameters is NaN.
31 cmp-long vx, vy, vz Compares the long values in vy
and vz and sets the integer value in vx accordingly3.
3100 0204 - cmp-long v0, v2, v4
Compares the long values in v2 and v4 then sets v0 accordingly.
32 if-eq vx,vy,target Jumps to target if vx==vy2.
vx
and vy are integer values.
32b3 6600 - if-eq v3, v11, 0080
// +0066
Jumps to the current position+66H words if v3==v11. 0080 is the label
of the target instruction.
33 if-ne vx,vy,target Jumps to target if vx!=vy2.
vx
and vy are integer values.
33A3 1000 - if-ne v3, v10, 002c
// +0010
Jumps to the current position+10H words if v3!=v10. 002c is the label
of the target instruction.
34 if-lt vx,vy,target Jumps to target is vx<vy2.
vx
and vy are integer values.
3432 CBFF - if-lt v2, v3, 0023
// -0035
Jumps to the current position-35H words if v2<v3. 0023 is the label
of the target instruction.
35 if-ge vx, vy,target Jumps to target if vx>=vy2.
vx
and vy are integer values.
3510 1B00 - if-ge v0, v1, 002b
//
+001b
Jumps to the current position+1BH words if v0>=v1. 002b is the label
of the target instruction.
36 if-gt vx,vy,target Jumps to target if vx>vy2.
vx
and vy are integer values.
3610 1B00 - if-ge v0, v1, 002b
//
+001b
Jumps to the current position+1BH words if v0>v1. 002b is the label
of the target instruction.
37 if-le vx,vy,target Jumps to target if vx<=vy2.
vx
and vy are integer values.
3756 0B00 - if-le v6, v5, 0144
// +000b
Jumps to the current position+0BH words if v6<=v5. 0144 is the label
of the target instruction.
38 if-eqz vx,target Jumps to target if vx==02.
vx
is an integer value.
3802 1900 - if-eqz v2, 0038 //
+0019
Jumps to the current position+19H words if v2==0. 0038 is the label
of the target instruction.
39 if-nez vx,target Checks vx and jumps if vx is
nonzero2.
3902 1200 - if-nez v2, 0014 //
+0012
Jumps to current position+18 words (hex 12) if v2 is nonzero. 0014 is
the label of the target instruction.
3A if-ltz vx,target Checks vx and jumps if vx<02.

3A00 1600 - if-ltz v0, 002d //
+0016
Jumps to the current position+16H words if v0<0. 002d is the label
of the target instruction.
3B if-gez vx,target Checks vx and jumps if vx>=02. 3B00 1600 - if-gez v0, 002d //
+0016
Jumps to the current position+16H words if v0 >=0. 002d is the label
of the target instruction.
3C if-gtz vx,target Checks vx and jumps if vx>02.

3C00 1D00 - if-gtz v0, 004a //
+001d
Jumps to the current position+1DH words if v0>0. 004A is the label
of the target instruction.
3D if-lez vx,target Checks vx and jumps if vx<=02.

3D00 1D00 - if-lez v0, 004a //
+001d
Jumps to the current position+1DH words if v0<=0. 004A is the label
of the target instruction.
3E unused_3E
3F unused_3F
40 unused_40
41 unused_41
42 unused_42
43 unused_43
44 aget vx,vy,vz Gets an integer value of an
object reference array into vx. The array is referenced by vy and is
indexed by vz.
4407 0306 - aget v7, v3, v6
Gets an integer array element. The array is referenced by v3
and the element is indexed by v6. The element will be put into v7.
45 aget-wide vx,vy,vz Gets a long/double value of
long/double array into vx,vx+1. The array is referenced by vy and is
indexed by vz.
4505 0104 - aget-wide v5, v1, v4
Gets a long/double array element. The array is referenced by v1
and the element is indexed by v4. The element will be put into v5,v6.
46 aget-object vx,vy,vz Gets an object reference value
of an object reference array into vx. The array is referenced by vy
and is indexed by vz.
4602 0200 - aget-object v2, v2,
v0
Gets an object reference array element. The array is referenced by v2
and the element is indexed by v0. The element will be put into v2.
47 aget-boolean vx,vy,vz Gets a boolean value
of a boolean array into vx. The array is referenced by vy
and is indexed by vz.
4700 0001 - aget-boolean v0, v0,
v1
Gets a boolean array element. The array is referenced by v0
and the element is indexed by v1. The element will be put into v0.
48 aget-byte vx,vy,vz Gets a byte value
of a byte array into vx. The array is referenced by vy
and is indexed by vz.
4800 0001 - aget-byte v0, v0, v1
Gets a byte array element. The array is referenced by v0
and the element is indexed by v1. The element will be put into v0.
49 aget-char vx, vy,vz Gets a char value  of a
character array into vx. The
element is indexed by vz, the array object is referenced by vy
4905 0003 - aget-char v5, v0, v3
Gets a character array element. The array is referenced by v0 and the
element is indexed by v3. The element will be put into v5.
4A aget-short vx,vy,vz Gets a short value  of a
short array into vx. The
element is indexed by vz, the array object is referenced by vy.
4A00 0001 - aget-short v0, v0, v1
Gets a short array element. The array is referenced by v0 and the
element is indexed by v1. The element will be put into v0.
4B aput vx,vy,vz Puts the integer value in vx
into an element of an integer array. The
element is indexed by vz, the array object is referenced by vy.
4B00 0305 - aput v0, v3, v5
Puts the integer value in v2 into an integer array
referenced by v0. The target array element is indexed by v1.
4C aput-wide vx,vy,vz Puts the double/long value in
vx,vx+1 into a double/long array. The array is referenced by vy, the
element is indexed by vz.
4C05 0104 - aput-wide v5, v1, v4
Puts the double/long value in v5,v6 into a double/long array
referenced by v1. The target array element is indexed by v4.
4D aput-object vx,vy,vz Puts the object reference value
in vx into an element of an object reference array. The
element is indexed by vz, the array object is referenced by vy.
4D02 0100 - aput-object v2, v1,
v0
Puts the object reference value in v2 into an object reference array
referenced by v0. The target array element is indexed by v1.
4E aput-boolean vx,vy,vz Puts the boolean value
in vx into an element of a boolean array. The
element is indexed by vz, the array object is referenced by vy.
4E01 0002 - aput-boolean v1, v0,
v2
Puts the boolean value in v1 into an object reference array
referenced by v0. The target array element is indexed by v2.
4F aput-byte vx,vy,vz Puts the byte value
in vx into an element of a byte array. The
element is indexed by vz, the array object is referenced by vy.
4F02 0001 - aput-byte v2, v0, v1
Puts the boolean value in v2 into a byte array
referenced by v0. The target array element is indexed by v1.
50 aput-char vx,vy,vz Puts the char value in vx into
an element of a character array. The
element is indexed by vz, the array object is referenced by vy.
5003 0001 - aput-char v3, v0, v1
Puts the character value in v3 into a character array referenced by v0.
The target array element is indexed by v1.
51 aput-short vx,vy,vz Puts the short value in vx into
an element of a short array. The
element is indexed by vz, the array object is referenced by vy.
5102 0001 - aput-short v2, v0, v1
Puts the short value in v2 into a character array referenced by v0.
The target array element is indexed by v1.
52 iget vx, vy, field_id Reads an instance field into vx.
The instance is referenced by vy.
5210 0300 - iget v0, v1,
Test2.i6:I // field@0003
Reads field@0003 into v0 (entry #3 in the field id table). The instance
is referenced by v1.
53 iget-wide vx,vy,field_id Reads an instance field into vx1.
The
instance is referenced by vy.
5320 0400 - iget-wide v0, v2,
Test2.l0:J // field@0004
Reads field@0004 into v0 and v1 registers (entry #4 in the field id
table). The instance is referenced by v2.
54 iget-object vx,vy,field_id Reads an object reference
instance field into vx. The instance is referenced by vy.
iget-object v1, v2,
LineReader.fis:Ljava/io/FileInputStream; // field@0002
Reads field@0002 into v1  (entry #2 in the field id
table). The instance is referenced by v2.
55 iget-boolean vx,vy,field_id Reads a boolean instance field
into vx. The instance is referenced by vy.
55FC 0000 - iget-boolean v12,
v15, Test2.b0:Z // field@0000
Reads the boolean field@0000 into v12 register (entry #0 in the field
id table). The instance is referenced by v15.
56 iget-byte vx,vy,field_id Reads a byte instance field
into vx. The instance is referenced by vy.
5632 0100 - iget-byte v2, v3,
Test3.bi1:B // field@0001
Reads the char field@0001 into v2 register (entry #1 in the field
id table). The instance is referenced by v3.
57 iget-char vx,vy,field_id Reads a char instance field
into vx. The instance is referenced by vy.
5720 0300 - iget-char v0, v2,
Test3.ci1:C // field@0003
Reads the char field@0003 into v0 register (entry #3 in the field
id table). The instance is referenced by v2.
58 iget-short vx,vy,field_id Reads a short instance field
into vx. The instance is referenced by vy.
5830 0800 - iget-short v0, v3,
Test3.si1:S // field@0008
Reads the short field@0008 into v0 register (entry #8 in the field
id table). The instance is referenced by v3.
59 iput vx,vy, field_id Puts vx into an instance field.
The instance is referenced by vy.
5920 0200 - iput v0,v2,
Test2.i6:I // field@0002
Stores v0 into field@0002 (entry #2 in the field id table). The
instance is referenced by v2.
5A iput-wide vx,vy, field_id Puts the wide value located in
vx and vx+1 registers into an instance field. The instance is
referenced by vy.
5A20 0000 - iput-wide v0,v2,
Test2.d0:D // field@0000
Stores the wide value in v0, v1 registers into field@0000 (entry #0 in
the field id table). The instance is referenced by v2.
5B iput-object vx,vy,field_id Puts the object reference in vx
into an instance field. The instance is referenced by vy.
5B20 0000 - iput-object v0, v2,
LineReader.bis:Ljava/io/BufferedInputStream; // field@0000
Stores the object reference in v0 into field@0000 (entry #0 in the
field table). The instance is referenced by v2.
5C iput-boolean vx,vy, field_id Puts the boolean value located
in vx into an instance field. The instance is referenced by vy.
5C30 0000 - iput-boolean v0, v3,
Test2.b0:Z // field@0000
Puts the boolean value in v0 into field@0000 (entry #0 in the field id
table). The instance is referenced by v3.
5D iput-byte vx,vy,field_id Puts the byte value located
in vx into an instance field. The instance is referenced by vy.
5D20 0100 - iput-byte v0, v2,
Test3.bi1:B // field@0001
Puts the boolean value in v0 into field@0001 (entry #1 in the field id
table). The instance is referenced by v2.
5E iput-char vx,vy,field_id Puts the char value located
in vx into an instance field. The instance is referenced by vy.
5E20 0300 - iput-char v0, v2,
Test3.ci1:C // field@0003
Puts the char value in v0 into field@0003 (entry #3 in the field id
table). The instance is referenced by v2.
5F iput-short vx,vy,field_id Puts the short value located
in vx into an instance field. The instance is referenced by vy.
5F21 0800 - iput-short v1, v2,
Test3.si1:S // field@0008
Puts the short value in v1 into field@0008 (entry #8 in the field id
table). The instance is referenced by v2.
60 sget vx,field_id Reads the integer field
identified by the field_id into vx.
6000 0700 - sget v0, Test3.is1:I
// field@0007
Reads field@0007 (entry #7 in the field id table) into v0.
61 sget-wide vx, field_id Reads the static field
identified by the field_id into vx and vx+1 registers.
6100 0500 - sget-wide v0,
Test2.l1:J // field@0005
Reads field@0005 (entry #5 in the field id table) into v0 and v1
registers.
62 sget-object vx,field_id Reads the object reference field
identified by the field_id into vx.
6201 0C00 - sget-object v1,
Test3.os1:Ljava/lang/Object; // field@000c
Reads field@000c (entry #CH in the field id table) into v1.
63 sget-boolean vx,field_id Reads the boolean static field
identified by the field_id into vx.
6300 0C00 - sget-boolean v0,
Test2.sb:Z // field@000c
Reads boolean field@000c (entry #12 in the field id table) into v0.
64 sget-byte vx,field_id Reads the byte static field
identified by the field_id into vx.
6400 0200 - sget-byte v0,
Test3.bs1:B // field@0002
Reads byte field@0002 (entry #2 in the field id table) into v0.
65 sget-char vx,field_id Reads the char static field
identified by the field_id into vx.
6500 0700 - sget-char v0,
Test3.cs1:C // field@0007
Reads byte field@0007 (entry #7 in the field id table) into v0.
66 sget-short vx,field_id Reads the short static field
identified by the field_id into vx.
6600 0B00 - sget-short v0,
Test3.ss1:S // field@000b
Reads short field@000b (entry #BH in the field id table) into v0.
67 sput vx, field_id Puts vx into a static field. 6700 0100 - sput v0, Test2.i5:I
// field@0001
Stores v0 into field@0001 (entry #1 in the field id table).
68 sput-wide vx, field_id Puts vx and vx+1 into a static
field.
6800 0500 - sput-wide v0,
Test2.l1:J // field@0005
Puts the long value in v0 and v1 into the field@0005 static field
(entry #5 in the field id table).
69 sput-object vx,field_id Puts object reference in vx into
a static field.
6900 0c00 - sput-object v0,
Test3.os1:Ljava/lang/Object; // field@000c
Puts the object reference value in v0 into the field@000c static field
(entry #CH in the field id table).
6A sput-boolean vx,field_id Puts boolean value in vx into a
static field.
6A00 0300 - sput-boolean v0,
Test3.bls1:Z // field@0003
Puts the byte value in v0 into the field@0003 static field
(entry #3 in the field id table).
6B sput-byte vx,field_id Puts byte value in vx into a
static field.
6B00 0200 - sput-byte v0,
Test3.bs1:B // field@0002
Puts the byte value in v0 into the field@0002 static field
(entry #2 in the field id table).
6C sput-char vx,field_id Puts char value in vx into a
static field.
6C01 0700 - sput-char v1,
Test3.cs1:C // field@0007
Puts the char value in v1 into the field@0007 static field
(entry #7 in the field id table).
6D sput-short vx,field_id Puts short value in vx into a
static field.
6D00 0B00 - sput-short v0,
Test3.ss1:S // field@000b
Puts the short value in v0 into the field@000b static field
(entry #BH in the field id table).
6E invoke-virtual { parameters },
methodtocall
Invokes a virtual method with
parameters.
6E53 0600 0421 - invoke-virtual
{ v4, v0, v1, v2, v3}, Test2.method5:(IIII)V // method@0006
Invokes the 6th method in the method table with the following
arguments: v4 is the "this" instance, v0, v1, v2, and v3 are the method
parameters. The method has 5 arguments (4 MSB bits of the second byte)5.
6F invoke-super
{parameter},methodtocall
Invokes the virtual method of
the immediate parent class.
6F10 A601 0100 invoke-super
{v1},java.io.FilterOutputStream.close:()V // method@01a6
Invokes method@01a6 with one parameter, v1.
70 invoke-direct { parameters },
methodtocall
Invokes a method with parameters
without the virtual method resolution.
7010 0800 0100 - invoke-direct
{v1}, java.lang.Object.<init>:()V // method@0008
Invokes the 8th method in the method table with just one parameter, v1
is the "this" instance5.
71 invoke-static {parameters},
methodtocall
Invokes a static method with
parameters.
7110 3400 0400 - invoke-static
{v4}, java.lang.Integer.parseInt:( Ljava/lang/String;)I // method@0034
Invokes method@34 static method. The method is called with one
parameter, v45.
72 invoke-interface
{parameters},methodtocall
Invokes an interface method. 7240 2102 3154 invoke-interface
{v1, v3, v4, v5}, mwfw.IReceivingProtocolAdapter.receivePackage:(
ILjava/lang/String;Ljava/io/InputStream;)Z // method@0221
Invokes method@221 interface method using parameters in v1,v3,v4 and v55.
73 unused_73
74 invoke-virtual/range
{vx..vy},methodtocall
Invokes virtual method with a
range of registers. The instruction
specifies the first register and the number of registers to be passed
to the method.
7403 0600 1300 - invoke-virtual
{v19..v21}, Test2.method5:(IIII)V // method@0006
Invokes the 6th method in the method table with the following
arguments: v19 is the "this" instance, v20 and v21 are the method
parameters. 
75 invoke-super/range Invokes  the virtual method
of the immediate parent class. The instruction specifies the first
register and the number of registers to be passed to the method.
7501 A601 0100 invoke-super
{v1},java.io.FilterOutputStream.close:()V // method@01a6
Invokes method@01a6 with one parameter, v1.
76 invoke-direct/range
{vx..vy},methodtocall
Invokes direct method with a
range of registers. The instruction specifies the first register and
the number of registers to be passed to the method.
7603 3A00 1300 -
invoke-direct/range {v19..21},java.lang.Object.<init>:()V //
method@003a
Invokes method@3A with 1 parameters (second byte of the
instruction=03). The parameter is stored in v19 (5th,6th bytes of the
instruction).
77 invoke-static/range
{vx..vy},methodtocall
Invokes static method with a
range of registers. The instruction
specifies the first register and the number of registers to be passed
to the method.
7703 3A00 1300 -
invoke-static/range {v19..21},java.lang.Integer.parseInt:(
Ljava/lang/String;)I // method@0034
Invokes method@3A with 1 parameters (second byte of the
instruction=03). The parameter is stored in v19 (5th,6th bytes of the
instruction).
78 invoke-interface-range Invokes an interface method with
a range of registers. The instruction
specifies the first register and the number of registers to be passed
to the method.
7840 2102 0100 invoke-interface
{v1..v4}, mwfw.IReceivingProtocolAdapter.receivePackage:(
ILjava/lang/String;Ljava/io/InputStream;)Z // method@0221
Invokes method@221 interface method using parameters in v1..v4.
79 unused_79
7A unused_7A
7B neg-int vx,vy Calculates vx=-vy. 7B01 - neg-int v1,v0
Calculates -v0 and stores the result in v1.
7C not-int vx,vy
7D neg-long vx,vy Calculates vx,vx+1=-(vy,vy+1) 7D02 - neg-long v2,v0
Calculates -(v0,v1) and stores the result into (v2,v3)
7E not-long vx,vy
7F neg-float vx,vy Calculates vx=-vy 7F01 - neg-float v1,v0
Calculates -v0 and stores the result into v1.
80 neg-double vx,vy Calculates vx,vx+1=-(vy,vy+1) 8002 - neg-double v2,v0
Calculates -(v0,v1) and stores the result into (v2,v3)
81 int-to-long vx, vy Converts the integer in vy into
a long in vx,vx+1.
8106 - int-to-long v6, v0
Converts an integer in v0 into a long in v6,v7.
82 int-to-float vx, vy Converts the integer in vx into
a float in vx.
8206 - int-to-float v6, v0
Converts the integer in v0 into a float in v6.
83 int-to-double vx, vy Converts the integer in vy into
the double in vx,vx+1.
8306 - int-to-double v6, v0
Converts the integer in v0 into a double in v6,v7
84 long-to-int vx,vy Converts the long value in
vy,vy+1 into an integer in vx.
8424 - long-to-int v4, v2
Converts the long value in v2,v3 into an integer value in v4.
85 long-to-float vx, vy Converts the long value in
vy,vy+1 into a float in vx.
8510 - long-to-float v0, v1
Convcerts the long value in v1,v2 into a float value in v0.
86 long-to-double vx, vy Converts the long value in
vy,vy+1 into a double value in vx,vx+1.
8610 - long-to-double v0, v1
Converts the long value in v1,v2 into a double value in v0,v1.
87 float-to-int vx, vy Converts the float value in vy
into an integer value in vx.
8730 - float-to-int v0, v3
Converts the float value in v3 into an integer value in v0.
88 float-to-long vx,vy Converts the float value in vy
into a long value in vx.
8830 - float-to-long v0, v3
Converts the float value in v3 into a long value in v0,v1.
89 float-to-double vx, vy Converts the float value in vy
into a double value in vx,vx+1.
8930 - float-to-double v0, v3
Converts the float value in v3 into a double value in v0,v1.
8A double-to-int vx, vy Converts the double value in
vy,vy+1 into an integer value in vx.
8A40  - double-to-int v0, v4
Converts the double value in v4,v5 into an integer value in v0.
8B double-to-long vx, vy Converts the double value in
vy,vy+1 into a long value in vx,vx+1.
8B40 - double-to-long v0, v4
Converts the double value in v4,v5 into a long value in v0,v1.
8C double-to-float vx, vy Converts the double value in
vy,vy+1 into a float value in vx.
8C40 - double-to-float v0, v4
Converts the double value in v4,v5 into a float value in v0,v1.
8D int-to-byte vx,vy Converts the int value in vy to
a byte value and stores it in vx.
8D00 - int-to-byte v0, v0
Converts the integer in v0 into a byte and puts the byte value into v0.
8E int-to-char vx,vy Converts the int value in vy to
a char value and stores it in vx.
8E33  - int-to-char v3, v3
Converts the integer in v3 into a char and puts the char value into v3.
8F int-to-short vx,vy Converts the int value in vy to
a short value and stores it in vx.
8F00 - int-to-short v0, v0
Converts the integer in v0 into a short and puts the short value into
v3.
90 add-int vx,vy,vz Calculates vy+vz and puts the
result into vx.
9000 0203 - add-int v0, v2, v3
Adds v3 to v2 and puts the result into v04.
91 sub-int vx,vy,vz Calculates vy-vz and puts the
result into vx.
9100 0203 - sub-int v0, v2, v3
Subtracts v3 from v2 and puts the result into v0.
92 mul-int vx, vy, vz Multiplies vz with wy and puts
the result int vx.
9200 0203 - mul-int v0,v2,v3
Multiplies v2 with w3 and puts the result into v0
93 div-int vx,vy,vz Divides vy with vz and puts the
result into vx.
9303 0001 - div-int v3, v0, v1
Divides v0 with v1 and puts the result into v3.
94 rem-int vx,vy,vz Calculates vy % vz and puts the
result into vx.
9400 0203 - rem-int v0, v2, v3
Calculates v3 % v2 and puts the result into v0.
95 and-int vx, vy, vz Calculates vy AND vz and puts
the result into vx.
9503 0001 - and-int v3, v0, v1
Calculates v0 AND v1 and puts the result into v3.
96 or-int vx, vy, vz Calculates vy OR vz and puts the
result into vx.
9603 0001 - or-int v3, v0, v1
Calculates v0 OR v1 and puts the result into v3.
97 xor-int vx, vy, vz Calculates vy XOR vz and puts
the result into vx.
9703 0001 - xor-int v3, v0, v1
Calculates v0 XOR v1 and puts the result into v3.
98 shl-int vx, vy, vz Shift vy left by the positions
specified by vz and store the result into vx.
9802 0001 - shl-int v2, v0, v1
Shift v0 left by the positions specified by v1 and store the result in
v2.
99 shr-int vx, vy, vz Shift vy right by the positions
specified by vz and store the result into vx.
9902 0001 - shr-int v2, v0, v1
Shift v0 right by the positions specified by v1 and store the result in
v2.
9A ushr-int vx, vy, vz Unsigned shift right
(>>>) vy by the positions specified by vz and store the result
into vx.
9A02 0001 - ushr-int v2, v0, v1
Unsigned shift v0 right by the positions specified by v1 and store the
result in v2.
9B add-long vx, vy, vz Adds vy to vz and puts the
result into vx1.
9B00 0305 - add-long v0, v3, v5
The long value in v3,v4 is added to the value in v5,v6 and the result
is stored in v0,v1.
9C sub-long vx,vy,vz Calculates vy-vz and puts the
result into vx1.
9C00 0305 - sub-long v0, v3, v5
Subtracts the long value in v5,v6 from the long value in v3,v4 and puts
the result into v0,v1.
9D mul-long vx,vy,vz Calculates vy*vz and puts the
result into vx1.
9D00 0305 - mul-long v0, v3, v5
Multiplies the long value in v5,v6 with the long value in v3,v4 and
puts
the result into v0,v1.
9E div-long vx, vy, vz Calculates vy/vz and puts the
result into vx1.
9E06 0002 - div-long v6, v0, v2
Divides the long value in v0,v1 with the long value in v2,v3 and pust
the result into v6,v7.
9F rem-long vx,vy,vz Calculates vy % vz and puts the
result into vx1.
9F06 0002 - rem-long v6, v0, v2
Calculates v0,v1 %  v2,v3 and puts
the result into v6,v7.
A0 and-long vx, vy, vz Calculates the vy AND vz and
puts the result into vx1.
A006 0002 - and-long v6, v0, v2
Calculates v0,v1 AND v2,v3 and puts the result into v6,v7.
A1 or-long vx, vy, vz Calculates the vy OR vz and puts
the result into vx1.
A106 0002 - or-long v6, v0, v2
Calculates v0,v1 OR v2,v3 and puts the result into v6,v7.
A2 xor-long vx, vy, vz Calculates the vy XOR vz and
puts the result into vx1.
A206 0002 - xor-long v6, v0, v2
Calculates v0,v1 XOR v2,v3 and puts the result into v6,v7.
A3 shl-long vx, vy, vz Shifts left vy by vz positions
and stores the result in vx1.
A302 0004 - shl-long v2, v0, v4
Shift v0,v1 by postions specified by v4 and puts the result into v2,v3.
A4 shr-long vx,vy,vz Shifts right vy by vz positions
and stores the result in vx1.
A402 0004 - shr-long v2, v0, v4
Shift v0,v1 by postions specified by v4 and puts the result into v2,v3.
A5 ushr-long vx, vy, vz Unsigned shifts right vy by vz
positions and stores the result in vx1.
A502 0004 - ushr-long v2, v0, v4
Unsigned shift v0,v1 by postions specified by v4 and puts the result
into v2,v3.
A6 add-float vx,vy,vz Adds vy to vz and puts the
result into vx.
A600 0203 - add-float v0, v2, v3
Adds the floating point numbers in v2 and v3 and puts the result into
v0.
A7 sub-float vx,vy,vz Calculates vy-vz and puts the
result into vx.
A700 0203 - sub-float v0, v2, v3
Calculates v2-v3 and puts the result into
v0.
A8 mul-float vx, vy, vz Multiplies vy with vz and puts
the result into vx.
A803 0001 - mul-float v3, v0, v1
Multiplies v0 with v1 and puts the result into v3.
A9 div-float vx, vy, vz Calculates vy/vz and puts the
result into vx.
A903 0001 - div-float v3, v0, v1
Divides v0 with v1 and puts the result into v3.
AA rem-float vx,vy,vz Calculates vy % vz and puts the
result into vx.
AA03 0001 - rem-float v3, v0, v1
Calculates v0 %  v1 and puts the result into v3.
AB add-double vx,vy,vz Adds vy to vz and puts the
result into vx1.
AB00 0305 - add-double v0, v3, v5
Adds the double value in v5,v6 registers to the double value in v3,v4
registers and places the result  in v0,v1 registers.
AC sub-double vx,vy,vz Calculates vy-vz and puts the
result into vx1.
AC00 0305 - sub-double v0, v3, v5
Subtracts the value in v5,v6 from the value in v3,v4 and puts the
result into v0,v1.
AD mul-double vx, vy, vz Multiplies vy with vz and puts
the result into vx1.
AD06 0002 - mul-double v6, v0, v2
Multiplies the double value in v0,v1 with the double value in v2,v3 and
puts the result into v6,v7.
AE div-double vx, vy, vz Calculates vy/vz and puts the
result into vx1.
AE06 0002 - div-double v6, v0, v2
Divides the double value in v0,v1 with the double value in v2,v3 and
puts the result into v6,v7.
AF rem-double vx,vy,vz Calculates vy % vz and puts the
result into vx1.
AF06 0002 - rem-double v6, v0, v2
Calculates v0,v1 % v2,v3 and
puts the result into v6,v7.
B0 add-int/2addr vx,vy Adds vy to vx. B010 - add-int/2addr v0,v1
Adds v1 to v0.
B1 sub-int/2addr vx,vy Calculates vx-vy and puts the
result into vx.
B140 - sub-int/2addr v0, v4
Subtracts v4 from v0 and puts the result into v0.
B2 mul-int/2addr vx,vy Multiplies vx with vy. B210 - mul-int/2addr v0, v1
Multiples v0 with v1 and puts the result into v0.
B3 div-int/2addr vx,vy Divides vx with vy and puts the
result into vx.
B310 - div-int/2addr v0, v1
Divides v0 with v1 and puts the result into v0.
B4 rem-int/2addr vx,vy Calculates vx % vy and puts the
result into vx
B410 - rem-int/2addr v0, v1
 Calculates v0 % v1 and puts the result into v0.
B5 and-int/2addr vx, vy Calculates vx AND vy and puts
the result into vx.
B510 - and-int/2addr v0, v1
Calculates v0 AND v1 and puts the result into v0.
B6 or-int/2addr vx, vy Calculates vx OR vy and puts the
result into vx.
B610 - or-int/2addr v0, v1
Calculates v0 OR v1 and puts the result into v0.
B7 xor-int/2addr vx, vy Calculates vx XOR vy and puts
the result into vx.
B710  - xor-int/2addr v0, v1
Calculates v0 XOR v1 and puts the result into v0.
B8 shl-int/2addr vx, vy Shifts vx left by vy positions. B810 - shl-int/2addr v0, v1
Shift v0 left by v1 positions.
B9 shr-int/2addr vx, vy Shifts vx right by vy positions. B910 - shr-int/2addr v0, v1
Shift v0 right by v1 positions.
BA ushr-int/2addr vx, vy Unsigned shift right
(>>>) vx by the positions specified by vy.
BA10 - ushr-int/2addr v0, v1
Unsigned shift v0 by the positions specified by v1.
BB add-long/2addr vx,vy Adds vy to vx1. BB20 - add-long/2addr v0, v2
Adds the long value in v2,v3 registers to the long value in v0,v1
registers.
BC sub-long/2addr vx,vy Calculates vx-vy and puts the
result into vx1.
BC70 - sub-long/2addr v0, v7
Subtracts the long value in v7,v8 from the long value in v0,v1 and puts
the result into v0,v1.
BD mul-long/2addr vx,vy Calculates vx*vy and puts the
result into vx1.
BD70 - mul-long/2addr v0, v7
Multiplies the long value in v7,v8 with the long value in v0,v1 and
puts
the result into v0,v1.
BE div-long/2addr vx, vy Calculates vx/vy and puts the
result into vx1.
BE20 - div-long/2addr v0, v2
Divides the long value in v0,v1 with the long value in v2,v3 and puts
the result into v0,v1
BF rem-long/2addr vx,vy Calculates vx % vy and puts the
result into vx1.
BF20 - rem-long/2addr v0, v2
Calculates v0,v1 % v2,v3 and puts
the result into v0,v1
C0 and-long/2addr vx, vy Calculates vx AND vy and puts
the result into vx1.
C020 - and-long/2addr v0, v2
Calculates v0,v1 OR v2,v3 and puts the result into v0,v1.
C1 or-long/2addr vx, vy Calculates vx OR vy and puts the
result into vx1.
C120  - or-long/2addr v0, v2
Calculates v0,v1 OR v2,v3 and puts the result into v0,v1.
C2 xor-long/2addr vx, vy Calculates vx XOR vy and puts
the result into vx1.
C220 - xor-long/2addr v0, v2
Calculates v0,v1 XOR v2,v3 and puts the result into v0,v1.
C3 shl-long/2addr vx, vy Shifts left the value in vx,vx+1
by the positions specified by vy and stores the result in vx,vx+1.
C320 - shl-long/2addr v0, v2
Shifts left v0,v1 by the positions specified by v2.
C4 shr-long/2addr vx, vy Shifts right the value in
vx,vx+1 by the positions specified by vy and stores the result in
vx,vx+1.
C420 - shr-long/2addr v0, v2
Shifts right v0,v1 by the positions specified by v2.
C5 ushr-long/2addr vx, vy Unsigned shifts right the value
in vx,vx+1 by the positions specified by vy and stores the result in
vx,vx+1.
C520 - ushr-long/2addr v0, v2
Unsigned shifts right v0,v1 by the positions specified by v2.
C6 add-float/2addr vx,vy Adds vy to vx. C640 - add-float/2addr v0,v4
Adds v4 to v0.
C7 sub-float/2addr vx,vy Calculates vx-vy and stores the
result in vx.
C740 - sub-float/2addr v0,v4
Adds v4 to v0.
C8 mul-float/2addr vx, vy Multiplies vx with vy. C810 - mul-float/2addr v0, v1
Multiplies v0 with v1.
C9 div-float/2addr vx, vy Calculates vx/vy and puts the
result into vx.
C910 - div-float/2addr v0, v1
Divides v0 with v1 and puts the result into v0.
CA rem-float/2addr vx,vy Calculates vx/vy and puts the
result into vx.
CA10 - rem-float/2addr v0, v1
 Calculates v0 % v1 and puts the result into v0.
CB add-double/2addr vx, vy Adds vy to vx1. CB70 - add-double/2addr v0, v7
Adds v7 to v0.
CC sub-double/2addr vx, vy Calculates vx-vy and puts the
result into vx1.
CC70 - sub-double/2addr v0, v7
Subtracts the value in v7,v8 from the value in v0,v1 and puts the
result into v0,v1.
CD mul-double/2addr vx, vy Multiplies vx with vy1. CD20 - mul-double/2addr v0, v2
Multiplies the double value in v0,v1 with the double value in v2,v3 and
puts the result into v0,v1.
CE div-double/2addr vx, vy Calculates vx/vy and puts the
result into vx1.
CE20 - div-double/2addr v0, v2
Divides the double value in v0,v1 with the double value in v2,v3 and
puts the value into v0,v1.
CF rem-double/2addr vx,vy Calculates vx % vy and puts the
result into vx1.
CF20 - rem-double/2addr v0, v2
 Calculates  v0,v1 %  v2,v3 and
puts the value into v0,v1.
D0 add-int/lit16 vx,vy,lit16 Adds vy to lit16 and stores the
result into vx.
D001 D204 - add-int/lit16 v1,
v0, #int 1234 // #04d2
Adds v0 to literal 1234 and stores the result into v1.
D1 sub-int/lit16 vx,vy,lit16 Calculates vy - lit16 and stores
the result into vx.
D101 D204 - sub-int/lit16 v1,
v0, #int 1234 // #04d2
Calculates v0 - literal 1234 and stores the result into v1.
D2 mul-int/lit16 vx,vy,lit16 Calculates vy * lit16 and stores
the result into vx.
D201 D204 - mul-int/lit16 v1,
v0, #int 1234 // #04d2
Calculates v0 * literal 1234 and stores the result into v1.
D3 div-int/lit16 vx,vy,lit16 Calculates vy / lit16 and stores
the result into vx.
D301 D204 - div-int/lit16 v1,
v0, #int 1234 // #04d2
Calculates v0 / literal 1234 and stores the result into v1.
D4 rem-int/lit16 vx,vy,lit16 Calculates vy % lit16 and stores
the result into vx.
D401 D204 - rem-int/lit16 v1,
v0, #int 1234 // #04d2
Calculates v0 % literal 1234 and stores the result into v1.
D5 and-int/lit16 vx,vy,lit16 Calculates vy AND lit16 and
stores the result into vx.
D501 D204 - and-int/lit16 v1,
v0, #int 1234 // #04d2
Calculates v0 AND literal 1234 and stores the result into v1.
D6 or-int/lit16 vx,vy,lit16 Calculates vy OR lit16 and
stores the result into vx.
D601 D204 - or-int/lit16 v1,
v0, #int 1234 // #04d2
Calculates v0 OR literal 1234 and stores the result into v1.
D7 xor-int/lit16 vx,vy,lit16 Calculates vy XOR lit16 and
stores the result into vx.
D701 D204 - xor-int/lit16 v1,
v0, #int 1234 // #04d2
Calculates v0 XOR literal 1234 and stores the result into v1.
D8 add-int/lit8 vx,vy,lit8 Adds vy to lit8 and stores the
result into vx.
D800 0201 - add-int/lit8 v0,v2,
#int1
Adds literal 1 to v2 and stores the result into v0.
D9 sub-int/lit8 vx,vy,lit8 Calculates vy-lit8 and stores
the
result into vx.
D900 0201 - sub-int/lit8 v0,v2,
#int1
Calculates v2-1 and stores the result into v0.
DA mul-int/lit8 vx,vy,lit8 Multiplies vy with lit8 8-bit
literal constant and puts the result into vx.
DA00 0002 - mul-int/lit8 v0,v0,
#int2
Multiplies v0 with literal 2 and puts the result into v0.
DB div-int/lit8 vx,vy,lit8 Calculates vy/lit8 and stores
the
result into vx.
DB00 0203 - mul-int/lit8 v0,v2,
#int3
Calculates v2/3 and stores the result into v0.
DC rem-int/lit8 vx,vy,lit8 Calculates vy % lit8 and stores
the
result into vx.
DC00 0203 - rem-int/lit8 v0,v2,
#int3
Calculates v2 % 3 and stores the result into v0.
DD and-int/lit8 vx,vy,lit8 Calculates vy AND lit8 and
stores the
result into vx.
DD00 0203 - and-int/lit8 v0,v2,
#int3
Calculates v2 AND 3 and stores the result into v0.
DE or-int/lit8 vx, vy, lit8 Calculates vy OR lit8 and puts
the result into vx.
DE00 0203 - or-int/lit8 v0, v2,
#int 3
Calculates v2 OR literal 3 and puts the result into v0.
DF xor-int/lit8 vx, vy, lit8 Calculates vy XOR lit8 and puts
the result into vx.
DF00
0203     |  0008: xor-int/lit8 v0, v2, #int 3
Calculates v2 XOR literal 3 and puts the result into v0.
E0 shl-int/lit8 vx, vy, lit8 Shift v0 left by the bit
positions specified by the literal constant and put the result into vx.
E001 0001 - shl-int/lit8 v1, v0,
#int 1
Shift v0 left by 1 position and put the result into v1.
E1 shr-int/lit8 vx, vy, lit8 Shift v0 right by the bit
positions specified by the literal constant and put the result into vx.
E101 0001 - shr-int/lit8 v1, v0,
#int 1
Shift v0 right by 1 position and put the result into v1.
E2 ushr-int/lit8 vx, vy, lit8 Unsigned right shift of v0
(>>>) by the bit positions specified by the literal constant
and put the result into vx.
E201 0001 - ushr-int/lit8 v1,
v0, #int 1
Unsigned shift v0 right by 1 position and put the result into v1.
E3 unused_E3
E4 unused_E4
E5 unused_E5
E6 unused_E6
E7 unused_E7
E8 unused_E8
E9 unused_E9
EA unused_EA
EB unused_EB
EC unused_EC
ED unused_ED
EE execute-inline
{parameters},inline ID
Executes the inline method
identified by inline ID6.
EE20 0300 0100 - execute-inline
{v1, v0}, inline #0003
Executes inline method #3 using v1 as "this" and passing one parameter
in v0.
EF unused_EF
F0 invoke-direct-empty Stands as a placeholder for
pruned empty methods like Object.<init>. This acts as nop during
normal execution6.
F010 F608 0000 -
invoke-direct-empty {v0}, Ljava/lang/Object;.<init>:()V //
method@08f6
Replacement for the empty method java/lang/Object;<init>.
F1 unused_F1
F2 iget-quick vx,vy,offset Gets the value stored at offset
in vy instance's data area to vx6.
F221 1000 - iget-quick v1, v2,
[obj+0010]
Gets the value at offset 0CH of the instance pointed by v2 and stores
the object reference in v1.
F3 iget-wide-quick vx,vy,offset Gets the object reference value
stored at offset in vy instance's data area to vx,vx+16.
F364 3001 - iget-wide-quick v4,
v6, [obj+0130]
Gets the value at offset 130H of the instance pointed by v6 and stores
the object reference in v4,v5.
F4 iget-object-quick vx,vy,offset Gets the object reference value
stored at offset in vy instance's data area to vx6.
F431 0C00 - iget-object-quick
v1, v3, [obj+000c]
Gets the object reference value at offset 0CH of the instance pointed
by v3 and stores the object reference in v1.
F5 iput-quick vx,vy,offset Puts the value stored in vx to
offset in vy instance's data area6.
F521 1000  - iput-quick v1,
v2, [obj+0010]
Puts the object reference value in v1 to offset 10H of the instance
pointed by v2.
F6 iput-wide-quick vx,vy,offset Puts the value stored in vx,vx+1
to offset in vy instance's data area6.
F652 7001 - iput-wide-quick v2,
v5, [obj+0170]
Puts the value in v2,v3 to offset 170H of the instance pointed by v5.
F7 iput-object-quick vx,vy,offset Puts the object reference value
stored in vx to offset in vy instance's data area to vx6.
F701 4C00 - iput-object-quick
v1, v0, [obj+004c]
Puts the object reference value in v1 to offset 0CH of the instance
pointed by v3.
F8 invoke-virtual-quick
{parameters},vtable offset
Invokes a virtual method using
the vtable of the target object6.
F820 B800 CF00 -
invoke-virtual-quick {v15, v12}, vtable #00b8
Invokes a virtual method. The target object instance is pointed by v15
and vtable entry #B8 points to the method to be called. v12 is a
parameter to the method call.
F9 invoke-virtual-quick/range
{parameter range},vtable offset
Invokes a virtual method using
the vtable of the target object6
F906 1800 0000 -
invoke-virtual-quick/range {v0..v5},vtable #0018
Invokes a method using the vtable of the
instance pointed by v0. v1..v5 registers are parameters to the method
call.
FA invoke-super-quick
{parameters},vtable offset
Invokes a virtual method in the
target object's immediate parent class using the vtable of that parent
class6.
FA40 8100 3254  -
invoke-super-quick {v2, v3, v4, v5}, vtable #0081
Invokes a method using the vtable of the immediate parent class of
instance pointed by v2. v3, v4 and v5 registers are parameters to the
method
call.
FB invoke-super-quick/range
{register range},vtable offset
Invokes a virtual method in the
target object's immediate parent class using the vtable of that parent
class6.
F906 1B00 0000 -
invoke-super-quick/range {v0..v5}, vtable #001b
Invokes a method using the vtable of the immediate parent class of
instance pointed by v0. v1..v5 registers are parameters to the method
call.
FC unused_FC
FD unused_FD
FE unused_FE
FF unused_FF
  1. Note that double and long
    values occupy
    two registers (e.g. the value addressed by vy is located in vy and vy+1
    registers)
  2. The offset can be positive or negative and it is calculated from
    the offset of the starting byte of the instruction. The offset is
    always interpreted in words (2 bytes per 1 offset value
    increment/decrement). Negative offset is stored in two's complement
    format. The current
    position is the offset of the starting byte of the instruction.
  3. Compare operations returrn positive value if the first operand is
    greater than the second operand, 0 if they are equal and negative value
    if the first operand is smaller than the second operand.
  4. Not seen in the wild, interpolated from Dalvik bytecode list.
  5. The invocation parameter list encoding is somewhat weird.
    Starting if parameter number > 4 and parameter number % 4 == 1, the
    5th (9th, etc.) parameter is encoded on the 4 lowest bit of the byte
    immediately following the instruction. Curiously, this encoding is not
    used in case of 1 parameter, in this case an entire 16 bit word is
    added after the method index of which only 4 bit is used to encode the
    single parameter while the lowest 4 bit of the byte following the
    instruction byte is left unused.
  6. This is an unsafe instruction and occurs only in ODEX files.

[查阅]Dalvik opcodes的更多相关文章

  1. Dalvik opcodes

    原文地址: http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html Dalvik opcodes Author: Gabor Paller V ...

  2. Dalvik opcodes 查询smali语法大全

    原文链接:http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html Vx values in the table denote a Dalvik ...

  3. [转载]Dalvik指令集

    这篇文章是转载的,为了便于查找一些指令,贴在这里. 转自:http://blog.csdn.net/canfengxiliu/article/details/20144119 ------------ ...

  4. 深入理解JAVA虚拟机原理之Dalvik虚拟机(三)

    更多Android高级架构进阶视频学习请点击:https://space.bilibili.com/474380680 本文是Android虚拟机系列文章的第三篇,专门介绍Andorid系统上曾经使用 ...

  5. Index of my articles

    65:一个表格说明RelativeLayout中的几个重要属性[Written By KillerLegend] (2013-10-16 21:59) 64:win7修改软件[授权给…]后面的名称 ( ...

  6. apk反编译(3)smali语法

    from http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html Dalvik opcodes Author: Gabor Paller Vx ...

  7. Android反编译基础(apktoos)--广工图书馆APK

    更多精彩内容 :http://www.chenchuangfeng.com QQ:375061590 ------------------------------------------------- ...

  8. smali文件语法参考

    Dalvik opcodes Author: Gabor Paller Vx values in the table denote a Dalvik register. Depending on th ...

  9. smail 语法参考

    Dalvik opcodes Author: Gabor Paller Vx values in the table denote a Dalvik register. Depending on th ...

随机推荐

  1. Java第6次实验提纲(异常)

    PTA与参考资料 题集:集合 异常实验文件 第1次实验 1.1 7-1 常用异常 如何进行强制转换 如何捕获多种类型的异常 1.2 7-2 使用异常机制处理异常输入 在哪里加catch 1.3 7-3 ...

  2. Sybase identity 字段

    1.identity Oracle, DB2, pgSQL中都有sequence的概念,这个概念比Identity先进很多,在Sybase中没有Sequence对象,与之相对应的是Identity 2 ...

  3. ngx.re.match

    ngx.re.match syntax: captures, err = ngx.re.match(subject, regex, options?, ctx?, res_table?) contex ...

  4. 解决HTML外部引用CSS文件不生效问题

    作为一个前端小白,鼓捣了几天前端..今天突然发现我深信不疑的东西,竟然出现了问题..就比如我在css目录下面写了一个css样式文档:style.css.这时里面只有一句话: body { backgr ...

  5. Redis之(一)初识Redis

    1.Redis概述 我们知道,内存是电脑主板上的存储部件,用于存储当前正在使用的数据和程序,CPU可以与内存直接沟通,所以访问速速非常高:而外存数据必须加载到内存以后程序才能使用.如果把CPU当做一个 ...

  6. proc文件系统探索 之 以数字命名的目录

    在proc根目录下,以数字命名的目录表示当前一个运行的进程,目录名即为进程的pid.其内的目录和文件给出了一些关于该进程的信息. niutao@niutao-desktop:/proc/6584$ l ...

  7. 判断&数学&生活

    作者:黄永刚 初次接触<概率论与数理统计>这门课的时候,脑袋中只有三个词:黑球.白球.袋子,所有的课程内容就是先取,后取,接触一月之后成功的被放趴下了,因此对于这门课程是没有什么好感的,考 ...

  8. mongo 写分析

    写操作 复制集 mongo所有的节点都是写入到primary节点,同时写入oplog,secondary 节点会持续的从primary节点上复制oplog的信息,然后根据oplog写数据.second ...

  9. log file sync 因为数据线有问题而造成高等侍的表现

    这是3月份某客户的情况,原因是服务器硬件故障后进行更换之后,业务翻译偶尔出现提交缓慢的情况.我们先来看下awr的情况. 我们可以看到,该系统的load profile信息其实并不高,每秒才21个tra ...

  10. NDK在windows下的开发环境搭建及开发过程

    在Android应用的开发工程中,不管是游戏还是普通应用,都时常会用到.so即动态链接库,关于.so是什么玩意儿,有什么好处,这个大家可以在网上查一下,本人不做过多解释..so本是linux下的文件类 ...