爬前叨叨

2019年开始了,今年计划写一整年的博客呢~,第一篇博客写一下 一个外包网站的爬虫,万一你从这个外包网站弄点外快呢,呵呵哒

![python3爬虫入门教程](https://img-blog.csdnimg.cn/20190102101929924.gif#pic_center =220x200)

数据分析

官方网址为 https://www.clouderwork.com/

进入全部项目列表页面,很容易分辨出来项目的分页方式

get异步请求

Request URL:https://www.clouderwork.com/api/v2/jobs/search?ts=1546395904852&keyword=&budget_range=&work_status=&pagesize=20&pagenum=3&sort=1&scope=
Request Method:GET
Status Code:200 OK

参数如下

	ts:1546395904852  # 时间戳
keyword: # 搜索关键字,查找全部,使用空即可
budget_range: # 暂时无用
work_status:
pagesize:20 # 每页数据量
pagenum:3 # 页码
sort:1 # 排序规则
scope:

下面就是拼接请求了,确定一下 request 相关参数

Accept:application/json, text/javascript, */*; q=0.01
Accept-Encoding:gzip, deflate, br
Accept-Language:zh-CN,zh;q=0.9
Connection:keep-alive
Cookie:
Host:www.clouderwork.com
Referer:https://www.clouderwork.com/jobs?keyword=
User-Agent:Mozilla/5.0 你自己的UA QQBrowser/10.3.3006.400
X-Requested-With:XMLHttpRequest

爬虫采用scrapy

这个网站没有反爬措施,所以直接上就可以了

# -*- coding: utf-8 -*-
import scrapy
from scrapy import Request
import time
import json class CloudeworkSpider(scrapy.Spider):
name = 'cloudework'
allowed_domains = ['www.clouderwork.com']
start_url = 'https://www.clouderwork.com/api/v2/jobs/search?ts={times}&keyword=&budget_range=&work_status=&pagesize={pagesize}&pagenum={pagenum}&sort=1&scope=' def start_requests(self):
for page in range(1,353):
yield Request(self.start_url.format(times=time.time(),pagesize=20,pagenum=page)) def parse(self, response):
json_data = json.loads(response.text)
for item in json_data["jobs"]:
yield item

数据存储到 mongodb中,合计爬取到 7000+ 数据

数据分析

从mongdo读取数据

import pymongo
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
# 连接数据库
client = pymongo.MongoClient("localhost",27017)
cloud = client["cloud"]
collection = cloud["cloudework"] # 加载数据
data = DataFrame(list(collection.find()))

结果显示为 [7032 rows x 35 columns]

查看数据基本情况

直接使用data.shape 可以查看一下数据的基本情况

查看一下工期的分布

periods = data.groupby(["period"]).size()

x = periods.index
y = periods.values
plt.figure()
plt.scatter(x,y, color="#03a9f4", alpha = 0.5) # 绘制图表
plt.xlim((0, 360))
plt.ylim((0, 2000))
plt.xlabel("工期")
plt.ylabel("项目数")
plt.show()

可以看到数据散点集中在0~50天

过滤一下40天以内的数据

periods = data.groupby(["period"]).size().reset_index(name="count")

df = periods[periods["period"]<=40]

x = df["period"]
y = df["count"] plt.figure()
plt.scatter(x,y,label='项目数折线',color="#ff44cc")
plt.title("工期对应项目数")
plt.xlim((0, 360))
plt.ylim((0, 500))
plt.show()

发现竟然有1天工期的任务,可以瞅瞅都是什么任务

periods = data.groupby(["period"]).size()
data[data["period"]==1][["name","period"]]

果然比较简单唉~~不过也没有多少钱,有个急活,1000¥

查看阅览量Top10

views = data["views_count"]
top10 = views.sort_values(ascending=False)[:10] top10 = data[data.views_count.isin(top10.values)][["name","views_count","period","summary"]]
top10

查阅一下开发模式

看一下什么类型的项目比较多???数据上反应,Web网站和APP最多了,所以这方面的技能的大神么,可以冲一波了

其实还有很多比较有意思的数据分析结果,有需要数据集的可以给我个评论 我发给你

新年第一篇博客结束liao~~

Python爬虫入门教程 37-100 云沃客项目外包网数据爬虫 scrapy的更多相关文章

  1. Python爬虫入门教程 41-100 Fiddler+夜神模拟器+雷电模拟器配置手机APP爬虫部分

    爬前叨叨 从40篇博客开始,我将逐步讲解一下手机APP的爬虫,关于这部分,我们尽量简化博客内容,在这部分中可能涉及到一些逆向,破解的内容,这部分尽量跳过,毕竟它涉及的东西有点复杂,并且偏离了爬虫体系太 ...

  2. Python爬虫入门教程 48-100 使用mitmdump抓取手机惠农APP-手机APP爬虫部分

    1. 爬取前的分析 mitmdump是mitmproxy的命令行接口,比Fiddler.Charles等工具方便的地方是它可以对接Python脚本. 有了它我们可以不用手动截获和分析HTTP请求和响应 ...

  3. Python爬虫入门教程 43-100 百思不得姐APP数据-手机APP爬虫部分

    1. Python爬虫入门教程 爬取背景 2019年1月10日深夜,打开了百思不得姐APP,想了一下是否可以爬呢?不自觉的安装到了夜神模拟器里面.这个APP还是比较有名和有意思的. 下面是百思不得姐的 ...

  4. Python爬虫入门教程 36-100 酷安网全站应用爬虫 scrapy

    爬前叨叨 2018年就要结束了,还有4天,就要开始写2019年的教程了,没啥感动的,一年就这么过去了,今天要爬取一个网站叫做酷安,是一个应用商店,大家可以尝试从手机APP爬取,不过爬取APP的博客,我 ...

  5. Python爬虫入门教程 3-100 美空网数据爬取

    美空网数据----简介 从今天开始,我们尝试用2篇博客的内容量,搞定一个网站叫做"美空网"网址为:http://www.moko.cc/, 这个网站我分析了一下,我们要爬取的图片在 ...

  6. Python基础入门教程

    Python基础入门教程 Python基础教程 Python 简介 Python环境搭建 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 Python 循 ...

  7. 【网络爬虫入门05】分布式文件存储数据库MongoDB的基本操作与爬虫应用

    [网络爬虫入门05]分布式文件存储数据库MongoDB的基本操作与爬虫应用 广东职业技术学院  欧浩源 1.引言 网络爬虫往往需要将大量的数据存储到数据库中,常用的有MySQL.MongoDB和Red ...

  8. Web开发入门教程:Pycharm轻松创建Flask项目

    Web开发入门教程:Pycharm轻松创建Flask项目 打开Pycharm的file,选择创建新的项目,然后弹出对话框,我们可以看到里面有很多的案例,Flask.Django等等,我们选择生成Fla ...

  9. Python爬虫入门教程 4-100 美空网未登录图片爬取

    美空网未登录图片----简介 上一篇写的时间有点长了,接下来继续把美空网的爬虫写完,这套教程中编写的爬虫在实际的工作中可能并不能给你增加多少有价值的技术点,因为它只是一套入门的教程,老鸟你自动绕过就可 ...

随机推荐

  1. 在高分屏正确显示CHM文件

    今天下了白色相簿2推,发现里面的chm格式的帮助文档显示不正确,又没法在应用程序直接设置系统分辨率托管,google了一下找到了这个方法: 新建 HKEY_LOCAL_MACHINE\ SOFTWAR ...

  2. MongoDb进阶实践之七 MongoDB的索引入门

    一.引言     好久没有写东西了,MongoDB系列的文章也丢下好长时间了.今天终于有时间了,就写了一篇有关索引的文章.一说到"索引",用过关系型数据库的人都应该知道它是一个什么 ...

  3. pycharm linux版快捷方式创建

    ****************************pycharm_linux安装and快捷方式创建******************1.下载好安装包之后解压:    tar -xfz 压缩包名 ...

  4. 几张图帮你理解 docker 基本原理及快速入门

    写的非常好的一篇文章,不知道为什么被删除了.  利用Google快照,做个存档. 快照地址:地址 作者地址:青牛 什么是docker Docker 是一个开源项目,诞生于 2013 年初,最初是 do ...

  5. CentOS7 安装 MySQL

    一.首先检查 MySQL 是否已安装 yum list installed | grep mysql 如果有的话 就全部卸载 yum -y remove +数据库名称 二.MySQL 依赖 libai ...

  6. linux下Clang和gcc的区别

    Clang 比 GCC 编译器的优势: 编译速度更快 编译产出更小 出错提示更友 好,比如 clang 在编译过程可以直接指出相对简单的出错位置以及它 “ 认为 ” 正确的方式 . 内置有静态分析工具 ...

  7. Spring Boot Favicon配置

    http://blog.csdn.net/xiaolyuh123/article/details/72403226

  8. Go笔记之二:一个完整的播放器示例

    Go笔记之二:一个完整的播放器示例 该示例从命令行运行一个播放器示例,可进行添加.删除.浏览和模拟播放,其内容是对 Go 语言接口使用的良好展示 源码及可执行文件 参考书籍<Go语言编程> ...

  9. SpringCloud实战-Feign声明式服务调用

    在前面的文章中可以发现当我们通过RestTemplate调用其它服务的API时,所需要的参数须在请求的URL中进行拼接,如果参数少的话或许我们还可以忍受,一旦有多个参数的话,这时拼接请求字符串就会效率 ...

  10. 在Workload Automation中实现suspend分析

    1. 背景 这里涉及到两个工具analyze_suspend.py和Workload Automation. 下面analyze_suspend.py简称为ASPY,Workload Automati ...