目标检测 anchor 理解笔记
anchor在计算机视觉中有锚点或锚框,目标检测中常出现的anchor box是锚框,表示固定的参考框。
目标检测的任务:
在哪里有东西
难点:
目标的类别不确定、数量不确定、位置不确定、尺度不确定
传统算法的解决方式:
都要金字塔多尺度+遍历滑窗的方式,逐尺度逐位置判断"这个尺度的这个位置处有没有认识的目标",非常笨重耗时,并不能很好的推广适用。
现状:
近期顶尖(SOTA)的目标检测方法几乎都用了anchor技术
作用:
首先预设一组不同尺度不同位置的固定参考框,覆盖几乎所有位置和尺度,每个参考框负责检测与其交并比大于阈值 (训练预设值,常用0.5或0.7) 的目标,anchor技术将问题转换为"这个固定参考框中有没有认识的目标,目标框偏离参考框多远",不再需要多尺度遍历滑窗,真正实现了又好又快,如在Faster R-CNN和SSD两大主流目标检测框架及扩展算法中anchor都是重要部分。
举例:
1.预设anchor

2.识别结果与预设anchor的IOU计算

如按照上图所示,计算所有红色与绿色的IOU(交并比),根据阈值来过滤掉我们需要的后,可能如下图所示:

蓝色部分为符合阈值剩余的部分。
当然在实际中存在一些其他的问题来辅助最后的预算,比如非极大值抑制(NMS)来挑选一个置信度最高的相似目标。
注意:
上图的示例仅仅是一个示例
真实的anchor应该参考如下图的方式:

b图中,生成的anchor为:\(8*8*(预设anchor数量)\)
c图中,生成的anchor为:\(4*4*(预设anchor数量)\)
以上为我根据查找的资料观摩后的个人理解
并没有去深究代码实现和论文
仅供参考
如果理解有误,希望您能不吝赐教。
参考
https://zhuanlan.zhihu.com/p/55824651
目标检测 anchor 理解笔记的更多相关文章
- 目标检测YOLOv1-v3——学习笔记
Fast RCNN更准一些.其损失函数比YOLO简单. YOLO更快 YOLO(You Only Look Once) 简介: 测试过程: 训练过程: 坐标.含有.不含.类别预测 目标检测的效果准确率 ...
- AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...
- zz目标检测
deep learning分类 目标检测-HyperNet-论文笔记 06-06 基础DL模型-Deformable Convolutional Networks-论文笔记 06-05 基础DL模型- ...
- [炼丹术]基于SwinTransformer的目标检测训练模型学习总结
基于SwinTransformer的目标检测训练模型学习总结 一.简要介绍 Swin Transformer是2021年提出的,是一种基于Transformer的一种深度学习网络结构,在目标检测.实例 ...
- 目标检测 IOU(交并比) 理解笔记
交并比(Intersection-over-Union,IoU): 目标检测中使用的一个概念 是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率 ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week3 目标检测
一.目标定位 这一小节视频主要介绍了我们在实现目标定位时标签该如何定义. 上图左下角给出了损失函数的计算公式(这里使用的是平方差) 如图示,加入我们需要定位出图像中是否有pedestrian,car, ...
- 目标检测:YOLO(v1 to v3)——学习笔记
前段时间看了YOLO的论文,打算用YOLO模型做一个迁移学习,看看能不能用于项目中去.但在实践过程中感觉到对于YOLO的一些细节和技巧还是没有很好的理解,现学习其他人的博客总结(所有参考连接都附于最后 ...
- OpenCV 学习笔记 07 目标检测与识别
目标检测与识别是计算机视觉中最常见的挑战之一.属于高级主题. 本章节将扩展目标检测的概念,首先探讨人脸识别技术,然后将该技术应用到显示生活中的各种目标检测. 1 目标检测与识别技术 为了与OpenCV ...
- 论文笔记:目标检测算法(R-CNN,Fast R-CNN,Faster R-CNN,FPN,YOLOv1-v3)
R-CNN(Region-based CNN) motivation:之前的视觉任务大多数考虑使用SIFT和HOG特征,而近年来CNN和ImageNet的出现使得图像分类问题取得重大突破,那么这方面的 ...
随机推荐
- D3中的each() 以及svg defs元素 clipPath的使用
each() 方法允许我们定制对选择集中DOM元素的处理行为: selection . each ( func ) 参数 func 是调用者定义的函数,在d3中被称为 访问器/accessor . d ...
- 重温《STL源码剖析》笔记 第一章
源码之前,了无秘密. --侯杰 经典的书,确实每看一遍都能重新收获一遍: 第一章:STL简介 STL的设计思维:对象的耦合性极低,复用性极高,符合开发封闭原则的程序库. STL的价值:1.带给我们一套 ...
- 解决jequry使用keydown无法跳转的问题
问题描述 代码 <script> $("document").ready(function() { $("#button").click(funct ...
- Robot framework之元素定位实战
1.1 id 和name 定位 Web页面都是由许多标签和元素组成的,每个标签或元素都是很多属性,好比一个人 id 和name 可以看作一个人的身份证号和姓名.下面看下教育局招生系统的用户名输入 ...
- MicroService 微服务架构模式简述
开源地址: https://github.com/TheCodeCleaner/MicroService4Net 本文内容 微服务 微服务风格的特性 组件化(Componentization )与服务 ...
- Python_小学口算题库生成器
import random import os import tkinter import tkinter.ttk from docx import Document columnsNumber = ...
- ThreadPoolExecutor 学习笔记
线程池的奥义 在开发程序的过程中,很多时候我们会遇到遇到批量执行任务的场景,当各个具体任务之间互相独立并不依赖其他任务的时候,我们会考虑使用并发的方式,将各个任务分散到不同的线程中进行执行来提高任务的 ...
- SSH免密码登录Linux服务器
作者:荒原之梦 原文链接:http://zhaokaifeng.com/?p=587 操作环境: 客户机操作系统:Ubuntu Linux 服务器操作系统:CentOS Linux 免密登陆的原理: ...
- Spring Cloud @HystrixCommand和@CacheResult注解使用,参数配置
使用Spring Cloud时绕不开Hystrix,他帮助微服务实现断路器功能.该框架的目标在于通过控制那些访问远程系统.服务和第三方库的节点,从而对延迟和故障提供更强大的容错能力.Hystrix具备 ...
- spawn-fcgi运行fcgiwrap
http://linuxjcq.blog.51cto.com/3042600/718002 标签:休闲 spawn-fcgi fcgiwarp fcgi 职场 原创作品,允许转载,转载时请务必以超链接 ...