在前面几篇关于数据库引擎的讨论里很多的运算函数都返回了scala.Future类型的结果,因为我以为这样就可以很方便的实现了non-blocking效果。无论任何复杂的数据处理操作,只要把它们包在一个Future{...}里扔给系统运算就算完事不理了,马上可以把关注放到编程的其它部分了。在3月17日的深圳scala用户meetup里我做了个关于scala函数式编程的分享,里面我提到现在使用最多的函数组件就是scala.Future了。我想这应该在scala用户群里是个比较普遍的现象:大家都认为这是实现non-blocking最直接的一种方式。不过当我在meetup后回想到scala.Future时突然意识到它是一种即时运算值strict-value,看看下面这个例子:

  import scala.concurrent.duration._
val fs = Future {println("run now..."); System.currentTimeMillis() }
//> run now...
//| fs : scala.concurrent.Future[Long] = List()
Await.result(fs, .second) //> res0: Long = 1465907784714
Thread.sleep()
Await.result(fs, .second) //> res1: Long = 1465907784714

可以看到fs是在Future构建时即时运算的,而且只会运算一次。如果scala Future中包括了能产生副作用的代码,在构建时就会立即产生副作用。所以我们是无法使用scala Future来编写纯函数的,如下:

val progA:Future[A] = for {
b <- readFromB
_ <- writeToLocationA(a)
r <- getResult
} yield r /* location A content updated */ ... /* later */ val progB: Future[B] = for {
a <- readFromA
_ <- updateLocationA
c <- getResult
} ... val program: Future[Unit] = for {
_ <- progA
_ <- progB
} yield()

在上面这个例子里最终的目的是运算program:由progA,progB两个子程序组成。这两个子程序在构建的时候已经开始了运算,随时都会更新localionA产生副作用。想象一下如果progA,progB是埋藏在其它一大堆源代码里的话program的运算结果肯定是无法预测的。换言之用Future来进行函数式组合就是在给自己挖坑嘛,最起码要记住这些Future的构建顺序,而这个要求在大型的协作开发软件工程里基本上是不可能的事。除了无法安全进行函数组合外scala.Future还缺少运算和线程控制的功能,比如:

无法控制什么时候开始运算

无法控制在在哪个线程运算

无法终止开始运算的程序

缺少有效的异常处理机制如fallback,retry等

scalaz和monix函数组件库里都提供了Task来辅助Future实现函数组合。scalaz.Task是基于scalaz.Future的:

sealed abstract class Future[+A] {
...
object Future {
case class Now[+A](a: A) extends Future[A]
case class Async[+A](onFinish: (A => Trampoline[Unit]) => Unit) extends Future[A]
case class Suspend[+A](thunk: () => Future[A]) extends Future[A]
case class BindSuspend[A,B](thunk: () => Future[A], f: A => Future[B]) extends Future[B]
case class BindAsync[A,B](onFinish: (A => Trampoline[Unit]) => Unit,
f: A => Future[B]) extends Future[B]
...

scalaz.Future[A]明显就是个Free Monad。它的结构化表达方式分别有Now,Async,Suspend,BindSuspend,BindAsync。我们可以用这些结构实现flatMap函数,所以Future就是Free Monad:

def flatMap[B](f: A => Future[B]): Future[B] = this match {
case Now(a) => Suspend(() => f(a))
case Suspend(thunk) => BindSuspend(thunk, f)
case Async(listen) => BindAsync(listen, f)
case BindSuspend(thunk, g) =>
Suspend(() => BindSuspend(thunk, g andThen (_ flatMap f)))
case BindAsync(listen, g) =>
Suspend(() => BindAsync(listen, g andThen (_ flatMap f)))
}

因为free structure类型支持算式/算法关注分离,我们可以用scalaz.Future来描述程序功能而不涉及正真运算。这样,在上面那个例子里如果progA,progB是Task类型的,那么program的构建就是安全的,因为我们最后是用Task.run来真正进行运算产生副作用的。scalaz.Task又在scalaz.Future功能基础上再增加了异常处理等功能。

monix.Task采取了延迟运算的方式来实现算式/算法分离,下面是这个类型的基础构建结构:

  /** [[Task]] state describing an immediate synchronous value. */
private[eval] final case class Now[A](value: A) extends Task[A] {...}
/** [[Task]] state describing an immediate synchronous value. */
private[eval] final case class Eval[A](thunk: () => A)
extends Task[A] /** Internal state, the result of [[Task.defer]] */
private[eval] final case class Suspend[+A](thunk: () => Task[A])
extends Task[A] /** Internal [[Task]] state that is the result of applying `flatMap`. */
private[eval] final case class FlatMap[A, B](source: Task[A], f: A => Task[B])
extends Task[B]
/** Internal [[Coeval]] state that is the result of applying `map`. */
private[eval] final case class Map[S, +A](source: Task[S], f: S => A, index: Int)
extends Task[A] with (S => Task[A]) { def apply(value: S): Task[A] =
new Now(f(value))
override def toString: String =
super[Task].toString
} /** Constructs a lazy [[Task]] instance whose result will
* be computed asynchronously.
*
* Unsafe to build directly, only use if you know what you're doing.
* For building `Async` instances safely, see [[create]].
*/
private[eval] final case class Async[+A](register: (Context, Callback[A]) => Unit)
extends Task[A]

下面的例子里示范了如果用这些结构来构件monix.Task:

object Task extends TaskInstancesLevel1 {
/** Returns a new task that, when executed, will emit the result of
* the given function, executed asynchronously.
*
* This operation is the equivalent of:
* {{{
* Task.eval(f).executeAsync
* }}}
*
* @param f is the callback to execute asynchronously
*/
def apply[A](f: => A): Task[A] =
eval(f).executeAsync /** Returns a `Task` that on execution is always successful, emitting
* the given strict value.
*/
def now[A](a: A): Task[A] =
Task.Now(a) /** Lifts a value into the task context. Alias for [[now]]. */
def pure[A](a: A): Task[A] = now(a) /** Returns a task that on execution is always finishing in error
* emitting the specified exception.
*/
def raiseError[A](ex: Throwable): Task[A] =
Error(ex) /** Promote a non-strict value representing a Task to a Task of the
* same type.
*/
def defer[A](fa: => Task[A]): Task[A] =
Suspend(fa _)
...}
source match {
case Task.Now(v) => F.pure(v)
case Task.Error(e) => F.raiseError(e)
case Task.Eval(thunk) => F.delay(thunk())
case Task.Suspend(thunk) => F.suspend(to(thunk()))
case other => suspend(other)(F)
}

这个Suspend结构就是延迟运算的核心。monix.Task是一套新出现的解决方案,借鉴了许多scalaz.Task的概念和方法同时又加入了很多优化、附加的功能,并且github更新也很近期。使用monix.Task应该是一个正确的选择。

首先我们必须解决scala.Future与monix.Task之间的转换:

  import monix.eval.Task
import monix.execution.Scheduler.Implicits.global final class FutureToTask[A](x: => Future[A]) {
def asTask: Task[A] = Task.deferFuture[A(x)
} final class TaskToFuture[A](x: => Task[A]) {
def asFuture: Future[A] = x.runAsync
}

下面是一个完整的Task用例:

import scala.concurrent._
import scala.util._
import scala.concurrent.duration._
import monix.eval.Task
import monix.execution._
object MonixTask extends App {
import monix.execution.Scheduler.Implicits.global // Executing a sum, which (due to the semantics of apply)
// will happen on another thread. Nothing happens on building
// this instance though, this expression is pure, being
// just a spec! Task by default has lazy behavior ;-)
val task = Task { + } // Tasks get evaluated only on runAsync!
// Callback style:
val cancelable = task.runOnComplete {
case Success(value) =>
println(value)
case Failure(ex) =>
System.out.println(s"ERROR: ${ex.getMessage}")
}
//=> 2 // If we change our mind...
cancelable.cancel() // Or you can convert it into a Future
val future: CancelableFuture[Int] =
task.runAsync // Printing the result asynchronously
future.foreach(println)
//=> 2 val task = Task.now { println("Effect"); "Hello!" }
//=> Effect
// task: monix.eval.Task[String] = Delay(Now(Hello!))
}

下面我们就看看各种Task的构建方法:

  /* ------ taskNow ----*/
val taskNow = Task.now { println("Effect"); "Hello!" }
//=> Effect
// taskNow: monix.eval.Task[String] = Delay(Now(Hello!)) /* --------taskDelay possible another on thread ------*/
val taskDelay = Task { println("Effect"); "Hello!" }
// taskDelay: monix.eval.Task[String] = Delay(Always(<function0>)) taskDelay.runAsync.foreach(println)
//=> Effect
//=> Hello! // The evaluation (and thus all contained side effects)
// gets triggered on each runAsync:
taskDelay.runAsync.foreach(println)
//=> Effect
//=> Hello! /* --------taskOnce ------- */
val taskOnce = Task.evalOnce { println("Effect"); "Hello!" }
// taskOnce: monix.eval.Task[String] = EvalOnce(<function0>) taskOnce.runAsync.foreach(println)
//=> Effect
//=> Hello! // Result was memoized on the first run!
taskOnce.runAsync.foreach(println)
//=> Hello! /* --------taskFork ------- */
// this guarantees that our task will get executed asynchronously:
val task = Task(Task.eval("Hello!")).executeAsync
//val task = Task.fork(Task.eval("Hello!")) // The default scheduler
import monix.execution.Scheduler.Implicits.global // Creating a special scheduler meant for I/O
import monix.execution.Scheduler
lazy val io = Scheduler.io(name="my-io")
//Then we can manage what executes on which: // Override the default Scheduler by fork:
val source = Task(println(s"Running on thread: ${Thread.currentThread.getName}"))
val forked = source.executeOn(io,true)
// val forked = Task.fork(source, io) source.runAsync
//=> Running on thread: ForkJoinPool-1-worker-1
forked.runAsync
//=> Running on thread: my-io-4 /* --------taskError ------- */
import scala.concurrent.TimeoutException val taskError = Task.raiseError[Int](new TimeoutException)
// error: monix.eval.Task[Int] =
// Delay(Error(java.util.concurrent.TimeoutException)) taskError.runOnComplete(result => println(result))
//=> Failure(java.util.concurrent.TimeoutException)

下面是一些控制函数:

  final def doOnFinish(f: Option[Throwable] => Task[Unit]): Task[A] =
final def doOnCancel(callback: Task[Unit]): Task[A] =
final def onCancelRaiseError(e: Throwable): Task[A] =
final def onErrorRecoverWith[B >: A](pf: PartialFunction[Throwable, Task[B]]): Task[B] =
final def onErrorHandleWith[B >: A](f: Throwable => Task[B]): Task[B] =
final def onErrorFallbackTo[B >: A](that: Task[B]): Task[B] =
final def restartUntil(p: (A) => Boolean): Task[A] =
final def onErrorRestart(maxRetries: Long): Task[A] =
final def onErrorRestartIf(p: Throwable => Boolean): Task[A] =
final def onErrorRestartLoop[S, B >: A](initial: S)(f: (Throwable, S, S => Task[B]) => Task[B]): Task[B] =
final def onErrorHandle[U >: A](f: Throwable => U): Task[U] =
final def onErrorRecover[U >: A](pf: PartialFunction[Throwable, U]): Task[U] =

Task是通过asyncRun和runSync来进行异步、同步实际运算的:

  def runAsync(implicit s: Scheduler): CancelableFuture[A] =
def runAsync(cb: Callback[A])(implicit s: Scheduler): Cancelable =
def runAsyncOpt(implicit s: Scheduler, opts: Options): CancelableFuture[A] =
def runAsyncOpt(cb: Callback[A])(implicit s: Scheduler, opts: Options): Cancelable =
final def runSyncMaybe(implicit s: Scheduler): Either[CancelableFuture[A], A] =
final def runSyncMaybeOpt(implicit s: Scheduler, opts: Options): Either[CancelableFuture[A], A] =
final def runSyncUnsafe(timeout: Duration)
(implicit s: Scheduler, permit: CanBlock): A =
final def runSyncUnsafeOpt(timeout: Duration)
(implicit s: Scheduler, opts: Options, permit: CanBlock): A =
final def runOnComplete(f: Try[A] => Unit)(implicit s: Scheduler): Cancelable =

下面示范了两个通常的Task运算方法:

  val task1 = Task {println("sum:"); +}.delayExecution( second)
println(task1.runSyncUnsafe( seconds)) task1.runOnComplete {
case Success(r) => println(s"result: $r")
case Failure(e) => println(e.getMessage)
}

下面是本次示范的源代码:

import scala.util._
import scala.concurrent.duration._
import monix.eval.Task
import monix.execution._
object MonixTask extends App {
import monix.execution.Scheduler.Implicits.global // Executing a sum, which (due to the semantics of apply)
// will happen on another thread. Nothing happens on building
// this instance though, this expression is pure, being
// just a spec! Task by default has lazy behavior ;-)
val task = Task { + } // Tasks get evaluated only on runAsync!
// Callback style:
val cancelable = task.runOnComplete {
case Success(value) =>
println(value)
case Failure(ex) =>
System.out.println(s"ERROR: ${ex.getMessage}")
}
//=> 2 // If we change our mind...
cancelable.cancel() // Or you can convert it into a Future
val future: CancelableFuture[Int] =
task.runAsync // Printing the result asynchronously
future.foreach(println)
//=> 2 /* ------ taskNow ----*/
val taskNow = Task.now { println("Effect"); "Hello!" }
//=> Effect
// taskNow: monix.eval.Task[String] = Delay(Now(Hello!)) /* --------taskDelay possible another on thread ------*/
val taskDelay = Task { println("Effect"); "Hello!" }
// taskDelay: monix.eval.Task[String] = Delay(Always(<function0>)) taskDelay.runAsync.foreach(println)
//=> Effect
//=> Hello! // The evaluation (and thus all contained side effects)
// gets triggered on each runAsync:
taskDelay.runAsync.foreach(println)
//=> Effect
//=> Hello! /* --------taskOnce ------- */
val taskOnce = Task.evalOnce { println("Effect"); "Hello!" }
// taskOnce: monix.eval.Task[String] = EvalOnce(<function0>) taskOnce.runAsync.foreach(println)
//=> Effect
//=> Hello! // Result was memoized on the first run!
taskOnce.runAsync.foreach(println)
//=> Hello! /* --------taskFork ------- */
// this guarantees that our task will get executed asynchronously:
val task = Task(Task.eval("Hello!")).executeAsync
//val task = Task.fork(Task.eval("Hello!")) // The default scheduler
import monix.execution.Scheduler.Implicits.global // Creating a special scheduler meant for I/O
import monix.execution.Scheduler
lazy val io = Scheduler.io(name="my-io")
//Then we can manage what executes on which: // Override the default Scheduler by fork:
val source = Task(println(s"Running on thread: ${Thread.currentThread.getName}"))
val forked = source.executeOn(io,true)
// val forked = Task.fork(source, io) source.runAsync
//=> Running on thread: ForkJoinPool-1-worker-1
forked.runAsync
//=> Running on thread: my-io-4 /* --------taskError ------- */
import scala.concurrent.TimeoutException val taskError = Task.raiseError[Int](new TimeoutException)
// error: monix.eval.Task[Int] =
// Delay(Error(java.util.concurrent.TimeoutException)) taskError.runOnComplete(result => println(result))
//=> Failure(java.util.concurrent.TimeoutException) val task1 = Task {println("sum:"); +}.delayExecution( second)
println(task1.runSyncUnsafe( seconds)) task1.runOnComplete {
case Success(r) => println(s"result: $r")
case Failure(e) => println(e.getMessage)
} }

SDP(13): Scala.Future - far from completion,绝不能用来做甩手掌柜的更多相关文章

  1. [转] Scala Async 库 (Scala future, await, async)

    [From] https://colobu.com/2016/02/15/Scala-Async/ 在我以前的文章中,我介绍了Scala Future and Promise.Future代表一个异步 ...

  2. 13. Scala函数式编程(高级部分)

    13.1 偏函数(partial function) 13.1.1 需求 -> 思考 一个集合val list = List(1,2,3,4,"abc"),完成如下要求 1) ...

  3. java多线程系列13 设计模式 Future 模式

    Future 模式 类似于ajax请求  页面异步的进行后台请求 用户无需等待请求的结果 就可以继续浏览或者操作 核心就是:去除了主函数的等待时间,并使得原本需要等待的时间段可以用于处理其他业务逻辑 ...

  4. scala future

    https://docs.scala-lang.org/overviews/core/futures.html https://docs.scala-lang.org/overviews/index. ...

  5. 混合使用ForkJoin+Actor+Future实现一千万个不重复整数的排序(Scala示例)

    目标       实现一千万个不重复整数的排序,可以一次性加载到 2G 的内存里. 本文适合于想要了解新语言 Scala 并发异步编程框架 Akka, Future 的筒鞋. 读完本文后,将了解如何综 ...

  6. Scala之Future超时

    最近在开发中使用akka http进行请求,返回的是一个future,并且要对future进行超时设置,不知怎么设置,因此学习了下. 一.Future阻塞 首先,scala中的future不支持内置超 ...

  7. SDP(6):分布式数据库运算环境- Cassandra-Engine

    现代信息系统应该是避不开大数据处理的.作为一个通用的系统集成工具也必须具备大数据存储和读取能力.cassandra是一种分布式的数据库,具备了分布式数据库高可用性(high-availability) ...

  8. [转] Scala 中的异步事件处理

    在任何并发性应用程序中,异步事件处理都至关重要.无论事件的来源是什么(不同的计算任务.I/O 操作或与外部系统的交互),您的代码都必须跟踪事件,协调为响应它们而执行的操作.应用程序可以采用两种基本方法 ...

  9. scala Futures and Promises

    http://docs.scala-lang.org/overviews/core/futures.html  Futures and Promises   By: Philipp Haller, A ...

随机推荐

  1. RegexKitLite编译报错

    报错如下:  Undefined symbols for architecture i386: "_uregex_open", referenced from: _rkl_getC ...

  2. POJ - 3268 单源最短路

    题意:给定一些有向边,以及一个目的地,从某个点到达目的地,再从目的地回到那个点.共有n个点,问这n个点花费最大是多少? 思路:从目的地回去直接把目的地作为源点即可.那么从某个点到达目的地应该如何得到最 ...

  3. UVa230 Borrowers

    原题链接 UVa230 思路 这题输入时有一些字符串处理操作,可以利用string的substr()函数和find_last_of()函数更加方便,处理时不必更要把书名和作者对应下来,注意到原题书名的 ...

  4. OPENCV 旋转图像算法-汇总

      void ImgRotate(cv::Mat imgIn, float theta, cv::Mat& imgOut) { int oldWidth = imgIn.cols; int o ...

  5. Linux sed 和 awk的用法

    sed用法: 原文链接:http://www.cnblogs.com/dong008259/archive/2011/12/07/2279897.html sed是一个很好的文件处理工具,本身是一个管 ...

  6. Photoshop 样式的角度/高度选择器控件

    Conmajia © 2012 Updated on Mar. 5, 2018 简介 Adobe Photoshop有两个非常专业的控件:角度选择器和角度与高度选择器,如图1所示. 图1 两种控件外观 ...

  7. JavaScript预编译原理分析

    一直对变量对象,活动对象,预编译,变量提升,执行上下文的时间顺序有着凌乱的认识,但是这些对理解JS语法有着很重要的作用.读了很多人的文章,都没有一个特别清晰的把这些写出来. 今天主要总结一下现阶段自己 ...

  8. JavaScript递归原理

    JavaScript递归是除了闭包以外,函数的又一特色呢.很多开发新手都很难理解递归的原理,我在此总结出自己对递归的理解. 所谓递归,可以这样理解,就是一个函数在自身的局部环境里通过自身函数名又调用, ...

  9. raw文件系统

    简介 RAW文件系统是一个没有被NT文件系统(FAT或NTFS)格式化的磁盘分区(win8默认用的是RAW文件系统). 2定义 分区显示RAW文件系统的直接原因,是由于文件系统不被操作系统识别.此时在 ...

  10. FusionCharts封装-Value

    Data.java: /** * @Title:Data.java * @Package:com.fusionchart.model * @Description:FusionCharts 封装dat ...