2018-03-01数据结构和算法(3)

1.11 命名切片

假定你有一段代码要从一个记录字符串中几个固定位置提取出特定的数据字段(比如文件或类似格式):

######    0123456789012345678901234567890123456789012345678901234567890'
record = '....................100 .......513.25 ..........'
cost = int(record[20:23]) * float(record[31:37])

  与其那样写,为什么不想这样命名切片呢:

SHARES = slice(20, 23)
PRICE = slice(31, 37)
cost = int(record[SHARES]) * float(record[PRICE])

  内置的 slice() 函数创建了一个切片对象,可以被用在任何切片允许使用的地方。比如:

>>> items = [0, 1, 2, 3, 4, 5, 6]
>>> a = slice(2, 4)
>>> items[2:4]
[2, 3]
>>> items[a]
[2, 3]
>>> items[a] = [10,11]
>>> items
[0, 1, 10, 11, 4, 5, 6]
>>> del items[a]
>>> items
[0, 1, 4, 5, 6]

  如果你有一个切片对象a,你可以分别调用它的 a.start , a.stop , a.step 属性来获取更多的信息。比如:

>>> a = slice(5, 50, 2)
>>> a.start
5
>>> a.stop
50
>>> a.step
2
>>>

  另外,你还能通过调用切片的 indices(size) 方法将它映射到一个确定大小的序列上, 这个方法返回一个三元组 (start, stop, step) ,所有值都会被合适的缩小以满足边界限制, 从而使用的时候避免出现 IndexError 异常。比如:

>>> s = 'HelloWorld'
>>> a.indices(len(s))
(5, 10, 2)
>>> for i in range(*a.indices(len(s))):
...     print(s[i])
...
W
r
d
>>>

1.12序列中出现次数最多的元素

collections.Counter 类就是专门为这类问题而设计的, 它甚至有一个有用的 most_common() 方法直接给了你答案。

为了演示,先假设你有一个单词列表并且想找出哪个单词出现频率最高。你可以这样做:

words = [
    'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
    'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the',
    'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into',
    'my', 'eyes', "you're", 'under'
]
from collections import Counter
word_counts = Counter(words)
# 出现频率最高的3个单词
top_three = word_counts.most_common(3)
print(top_three)
# Outputs [('eyes', 8), ('the', 5), ('look', 4)]

  作为输入, Counter 对象可以接受任意的由可哈希(hashable)元素构成的序列对象。 在底层实现上,一个 Counter 对象就是一个字典,将元素映射到它出现的次数上。比如:

>>> word_counts['not']
1
>>> word_counts['eyes']
8
>>>

  如果你想手动增加计数,可以简单的用加法:

>>> morewords = ['why','are','you','not','looking','in','my','eyes']
>>> for word in morewords:
...     word_counts[word] += 1
...
>>> word_counts['eyes']
9
>>>

  

或者你可以使用 update() 方法:

>>> word_counts.update(morewords)
>>>

Counter 实例一个鲜为人知的特性是它们可以很容易的跟数学运算操作相结合。比如:

>>> a = Counter(words)
>>> b = Counter(morewords)
>>> a
Counter({'eyes': 8, 'the': 5, 'look': 4, 'into': 3, 'my': 3, 'around': 2,
"you're": 1, "don't": 1, 'under': 1, 'not': 1})
>>> b
Counter({'eyes': 1, 'looking': 1, 'are': 1, 'in': 1, 'not': 1, 'you': 1,
'my': 1, 'why': 1})
>>> # Combine counts
>>> c = a + b
>>> c
Counter({'eyes': 9, 'the': 5, 'look': 4, 'my': 4, 'into': 3, 'not': 2,
'around': 2, "you're": 1, "don't": 1, 'in': 1, 'why': 1,
'looking': 1, 'are': 1, 'under': 1, 'you': 1})
>>> # Subtract counts
>>> d = a - b
>>> d
Counter({'eyes': 7, 'the': 5, 'look': 4, 'into': 3, 'my': 2, 'around': 2,
"you're": 1, "don't": 1, 'under': 1})
>>>

毫无疑问, Counter 对象在几乎所有需要制表或者计数数据的场合是非常有用的工具。 在解决这类问题的时候你应该优先选择它,而不是手动的利用字典去实现。

1.13通过某个关键字排序一个字典列表  

通过使用 operator 模块的 itemgetter 函数,可以非常容易的排序这样的数据结构。 假设你从数据库中检索出来网站会员信息列表,并且以下列的数据结构返回:

rows = [
    {'fname': 'Brian', 'lname': 'Jones', 'uid': 1003},
    {'fname': 'David', 'lname': 'Beazley', 'uid': 1002},
    {'fname': 'John', 'lname': 'Cleese', 'uid': 1001},
    {'fname': 'Big', 'lname': 'Jones', 'uid': 1004}
]

 根据任意的字典字段来排序输入结果行是很容易实现的,代码示例: 

from operator import itemgetter
rows_by_fname = sorted(rows, key=itemgetter('fname'))
rows_by_uid = sorted(rows, key=itemgetter('uid'))
print(rows_by_fname)
print(rows_by_uid)
#代码的输出如下:
[{'fname': 'Big', 'uid': 1004, 'lname': 'Jones'},
{'fname': 'Brian', 'uid': 1003, 'lname': 'Jones'},
{'fname': 'David', 'uid': 1002, 'lname': 'Beazley'},
{'fname': 'John', 'uid': 1001, 'lname': 'Cleese'}]
[{'fname': 'John', 'uid': 1001, 'lname': 'Cleese'},
{'fname': 'David', 'uid': 1002, 'lname': 'Beazley'},
{'fname': 'Brian', 'uid': 1003, 'lname': 'Jones'},
{'fname': 'Big', 'uid': 1004, 'lname': 'Jones'}]

  itemgetter() 函数也支持多个 keys,比如下面的代码:

rows_by_lfname = sorted(rows, key=itemgetter('lname','fname'))
print(rows_by_lfname)
#输出结果如下:
[{'fname': 'David', 'uid': 1002, 'lname': 'Beazley'},
{'fname': 'John', 'uid': 1001, 'lname': 'Cleese'},
{'fname': 'Big', 'uid': 1004, 'lname': 'Jones'},
{'fname': 'Brian', 'uid': 1003, 'lname': 'Jones'}]

  

在上面例子中, rows 被传递给接受一个关键字参数的 sorted() 内置函数。 这个参数是 callable 类型,并且从 rows 中接受一个单一元素,然后返回被用来排序的值。 itemgetter() 函数就是负责创建这个 callable 对象的。

operator.itemgetter() 函数有一个被 rows 中的记录用来查找值的索引参数。可以是一个字典键名称, 一个整形值或者任何能够传入一个对象的 __getitem__() 方法的值。 如果你传入多个索引参数给 itemgetter() ,它生成的 callable 对象会返回一个包含所有元素值的元组, 并且 sorted() 函数会根据这个元组中元素顺序去排序。 但你想要同时在几个字段上面进行排序(比如通过姓和名来排序,也就是例子中的那样)的时候这种方法是很有用的。

itemgetter() 有时候也可以用 lambda 表达式代替,比如:

rows_by_fname = sorted(rows, key=lambda r: r['fname'])
rows_by_lfname = sorted(rows, key=lambda r: (r['lname'],r['fname']))

 

这种方案也不错。但是,使用 itemgetter() 方式会运行的稍微快点。因此,如果你对性能要求比较高的话就使用 itemgetter() 方式。

最后,不要忘了这节中展示的技术也同样适用于 min()max() 等函数。比如:

>>> min(rows, key=itemgetter('uid'))
{'fname': 'John', 'lname': 'Cleese', 'uid': 1001}
>>> max(rows, key=itemgetter('uid'))
{'fname': 'Big', 'lname': 'Jones', 'uid': 1004}
>>> 

1.14排序不支持原生比较对象

内置的 sorted() 函数有一个关键字参数 key ,可以传入一个 callable 对象给它, 这个 callable 对象对每个传入的对象返回一个值,这个值会被 sorted 用来排序这些对象。 比如,如果你在应用程序里面有一个 User 实例序列,并且你希望通过他们的 user_id 属性进行排序, 你可以提供一个以 User 实例作为输入并输出对应 user_id 值的 callable 对象。比如:

class User:
    def __init__(self, user_id):
        self.user_id = user_id

    def __repr__(self):
        return 'User({})'.format(self.user_id)

def sort_notcompare():
    users = [User(23), User(3), User(99)]
    print(users)
    print(sorted(users, key=lambda u: u.user_id))
#另外一种方式是使用 operator.attrgetter() 来代替 lambda 函数:
>>> from operator import attrgetter
>>> sorted(users, key=attrgetter('user_id'))
[User(3), User(23), User(99)]
>>>

  同样需要注意的是,这一小节用到的技术同样适用于像 min()max() 之类的函数。比如:

>>> min(users, key=attrgetter('user_id'))
User(3)
>>> max(users, key=attrgetter('user_id'))
User(99)
>>>

1.15通过某个字段将记录分组

rows = [
    {'address': '5412 N CLARK', 'date': '07/01/2012'},
    {'address': '5148 N CLARK', 'date': '07/04/2012'},
    {'address': '5800 E 58TH', 'date': '07/02/2012'},
    {'address': '2122 N CLARK', 'date': '07/03/2012'},
    {'address': '5645 N RAVENSWOOD', 'date': '07/02/2012'},
    {'address': '1060 W ADDISON', 'date': '07/02/2012'},
    {'address': '4801 N BROADWAY', 'date': '07/01/2012'},
    {'address': '1039 W GRANVILLE', 'date': '07/04/2012'},
]

 现在假设你想在按 date 分组后的数据块上进行迭代。为了这样做,你首先需要按照指定的字段(这里就是 date )排序, 然后调用 itertools.groupby() 函数:

from operator import itemgetter
from itertools import groupby

# Sort by the desired field first
rows.sort(key=itemgetter('date'))
# Iterate in groups
for date, items in groupby(rows, key=itemgetter('date')):
    print(date)
    for i in items:
        print(' ', i)

 运行结果:

07/01/2012
  {'date': '07/01/2012', 'address': '5412 N CLARK'}
  {'date': '07/01/2012', 'address': '4801 N BROADWAY'}
07/02/2012
  {'date': '07/02/2012', 'address': '5800 E 58TH'}
  {'date': '07/02/2012', 'address': '5645 N RAVENSWOOD'}
  {'date': '07/02/2012', 'address': '1060 W ADDISON'}
07/03/2012
  {'date': '07/03/2012', 'address': '2122 N CLARK'}
07/04/2012
  {'date': '07/04/2012', 'address': '5148 N CLARK'}
  {'date': '07/04/2012', 'address': '1039 W GRANVILLE'}

 

groupby() 函数扫描整个序列并且查找连续相同值(或者根据指定 key 函数返回值相同)的元素序列。 在每次迭代的时候,它会返回一个值和一个迭代器对象, 这个迭代器对象可以生成元素值全部等于上面那个值的组中所有对象。

一个非常重要的准备步骤是要根据指定的字段将数据排序。 因为 groupby() 仅仅检查连续的元素,如果事先并没有排序完成的话,分组函数将得不到想要的结果。

如果你仅仅只是想根据 date 字段将数据分组到一个大的数据结构中去,并且允许随机访问, 那么你最好使用 defaultdict() 来构建一个多值字典,关于多值字典已经在 1.6 小节有过详细的介绍。比如:

from collections import defaultdict
rows_by_date = defaultdict(list)
for row in rows:
    rows_by_date[row['date']].append(row)

 这样的话你可以很轻松的就能对每个指定日期访问对应的记录:

>>> for r in rows_by_date['07/01/2012']:
... print(r)
...
{'date': '07/01/2012', 'address': '5412 N CLARK'}
{'date': '07/01/2012', 'address': '4801 N BROADWAY'}
>>>

 在上面这个例子中,我们没有必要先将记录排序。因此,如果对内存占用不是很关心, 这种方式会比先排序然后再通过 groupby() 函数迭代的方式运行得快一些。 

 

 

 

 

python3学习笔记3---引用http://python3-cookbook.readthedocs.io/zh_CN/latest/的更多相关文章

  1. python3学习笔记1---引用http://python3-cookbook.readthedocs.io/zh_CN/latest/

    2018-02-28数据结构和算法(1) 1.1解压序列赋值给多个变量: 任何的序列(或者是可迭代对象)可以通过一个简单的赋值语句解压并赋值给多个变量. 唯一的前提就是变量的数量必须跟序列元素的数量是 ...

  2. python3学习笔记4---引用http://python3-cookbook.readthedocs.io/zh_CN/latest/

    2018-03-01数据结构与算法(4) 1.16过滤序列元素 最简单的过滤序列元素的方法就是使用列表推导.比如: >>> mylist = [1, 4, -5, 10, -7, 2 ...

  3. python3学习笔记2---引用http://python3-cookbook.readthedocs.io/zh_CN/latest/2

    2018-03-01数据结构和算法(2) 1.6字典中的键映射多个值 一个字典就是一个键对应一个单值的映射.如果你想要一个键映射多个值,那么你就需要将这多个值放到另外的容器中, 比如列表或者集合里面. ...

  4. python3学习笔记(6)_iteration

    #python3 学习笔记17/07/10 # !/usr/bin/env python3 # -*- coding:utf-8 -*- #类似 其他语言的for循环,但是比for抽象程度更高 # f ...

  5. Python3学习笔记(urllib模块的使用)转http://www.cnblogs.com/Lands-ljk/p/5447127.html

    Python3学习笔记(urllib模块的使用)   1.基本方法 urllib.request.urlopen(url, data=None, [timeout, ]*, cafile=None,  ...

  6. Python3学习笔记 - 准备环境

    前言 最近乘着项目不忙想赶一波时髦学习一下Python3.由于正好学习了Docker,并深深迷上了Docker,所以必须趁热打铁的用它来创建我们的Python3的开发测试环境.Python3的中文教程 ...

  7. python3学习笔记(7)_listComprehensions-列表生成式

    #python3 学习笔记17/07/11 # !/usr/bin/env python3 # -*- conding:utf-8 -*- #通过列表生成式可以生成格式各样的list,这种list 一 ...

  8. python3学习笔记(5)_slice

    #python3 学习笔记17/07/10 # !/usr/bin/env python3 # -*- coding:utf-8 -*- #切片slice 大大简化 对于指定索引的操作 fruits ...

  9. python3.4学习笔记(一) 基本语法 python3不向下兼容,有些语法跟python2.x不一样

    python3.4学习笔记(一) 基本语法 python3不向下兼容,有些语法跟python2.x不一样,IDLE shell编辑器,快捷键:ALT+p,上一个历史输入内容,ALT+n 下一个历史输入 ...

随机推荐

  1. Uva - 1598 - Exchange

    本来想用优先队列做,可是不知道怎么处理之间的关系,最后还是用了map方法AC了,不过速度上有些慢,提交的时候跑了1.557秒.估计这道题时间都稍微长些,题目的时间限制也是4.5秒,不像一般题目的3秒限 ...

  2. Linux中的查找命令find

    原文:http://blog.csdn.net/windone0109/article/details/2817792 查找目录:find /(查找范围) -name '查找关键字' -type d ...

  3. SpriteBuilder中使用Node类型的ccb动画节点删除时崩溃的问题

    因为节点需要呈现动画效果,虽然只有两个不同帧. 在SpriteBuilder中新建Bullet.ccb文件,类型为node. 添加如上2张图片,并制作动画效果帧. 在游戏中子弹遇到障碍物会被删除,时机 ...

  4. PO标准form的一点疑问

    最近在修改采购订单form的时候,发现采购订单form往数据库中插数据的地方找不到,程序太多.我们又需要根据界面上的item的值在订单界面数据生成数据库数据时插值时,只能是想其他办法,一种是在on-i ...

  5. [TCP] 网络协议流程图

    之前在跟别人讲协议的时候总是找不到类似的图,这次再看python网络编程书籍的时候找到了一个,留存一份. 清晰的看到不同协议在不同层的传输过程!

  6. Guava 教程(4):条件,多重映射和分片

    原文出处: oschina 在本系列博客的前三章,我们大概介绍了Google的Guava类库和Collections类库,作为一名Java开发人员,相信你会从使用这些类库,进而来减少在你项目中使用样板 ...

  7. Git版本控制 — 日常使用(二)

    本地使用 以下是我的一些日常操作. (1) 创建版本库 # cd /proj # git init Initialized empty Git repository in /proj/.git/ (2 ...

  8. 类模板语法知识体系梳理(包含大量常犯错误demo,尤其滥用友元函数的错误)

    demo 1 #include <iostream> #include <cstdio> using namespace std; //template <typenam ...

  9. shell脚本处理长参数的模板

    shell脚本处理长参数的模板 一个shell模板,处理命令行参数,支持长短参数: #!/bin/bash # # FILE: kvm-clone-v2.sh # # DESCRIPTION: Clo ...

  10. androd输入管理系统机制解析

     android的输入管理系统主要完成按键.触摸板.鼠标等输入设备的事件输入,功能包括,输入设备的事件输入及向焦点窗口和焦点视图的事件派发,事件的插入,事件的过滤,事件的拦截等功能. 整个输入系统 ...