MapReduce寻找共同好友
1.测试文件
A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J
2.方法
2-1.方法一:
1.将域用户和好友分别作为值和键输出
{B,C,D,F,E,O}:A
{A,C,E,K}:B
2.可以看出:B,C,D,F,E,O都有共同好友A,
3.把A的好友两两组合作为键,A作为值,冒泡输出
4.经过shuffle处理后,会把BC作为键,共同好友作为值放入集合中
5.迭代集合中的好友,一次输出即可
2-2.方法二:
1.将用户和好友作为键和值输出
A:B,C,D,F,E,O --A:B,C,D,F,E,O
B:A,C,E,K --B:A,C,E,K
C:F,A,D,I --C:A,D,F,I
D:A,E,F,L --D:A,E,F,L
E:B,C,D,M,L --E:B,C,D,L,M
2.将所有键值对添加到map集合中
3.取map的键(所有用户)为数组
4.迭代数组,通过用户名"A"在map中取得他的好友
5.迭代除用户"A"以外的其他用户,获取这些用户的好友;
如果有用户同时存在于"A"和"B"的好友列表中
那么这些好友就是"AB"的共同好友
--A:{B,C,D,F,E,O}
--B:{A,C,E,K}
"A"中存在"C,E"用户,"B"中也存在"C,E"用户,那么"C,E"就是AB的共同好友
6.将"AB"作为键,共同好友作为值输出即可
3.代码
public class Friends {
// map
public static class MRMapper extends Mapper<LongWritable, Text, Text, Text> {
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String str = value.toString();
String friends = str.substring(2);
System.out.println(friends);
context.write(new Text(str.charAt(0) + ""), new Text(friends));
}
}
// reduce
public static class MRReducer extends Reducer<Text, Text, Text, Text> {
private static HashMap<String, String> map1 = new HashMap<String, String>();
public void run(Context context) throws IOException, InterruptedException {
try {
while (context.nextKeyValue()) {
reduce(context.getCurrentKey(), context.getValues(), context);
}
} finally {
cleanup(context);
}
}
public void reduce(Text key, Iterable<Text> iterable, Context context)
throws IOException, InterruptedException {
for (Text t : iterable) {
map1.put(key.toString(), t.toString());
}
}
public void cleanup(Reducer<Text, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
List<String> list = new ArrayList<String>();
Collection<String> keys = map1.keySet();// 所有用户
String keys1 = keys.toString();
String keys2 = keys1.substring(1, keys1.length() - 1);
String[] split = keys2.split(",");
for (int i = 1; i < split.length; i++) {//迭代用户
String a = split[i].trim();
for (int j = (i+1); j < split.length; j++) {//迭代除外层循环以外的用户
String b = split[j].trim();
String a_and_b = "";
// a的好友
String af = map1.get(a);
String[] friends = af.split(",");
for (String s : friends) {//比较两个用户的好友列表,取共同好友
if (map1.get(b).contains(s)) {
a_and_b += "," + s;
}
}
System.out.println(a + "," + b + " 共同好友 " + a_and_b);
if (a_and_b.length() > 1) {
list.add(a + "," + b + " 共同好友 :" + a_and_b.substring(1));
}
}
}
for(String s:list){
context.write(new Text(""), new Text(s));
}
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(Friends.class);
job.setMapperClass(MRMapper.class);
job.setReducerClass(MRReducer.class);
job.setCombinerClass(MRReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, new Path("hdfs://hadoop5:9000/input/friends.txt"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://hadoop5:9000/output/friends"));
System.out.println(job.waitForCompletion(true) ? 1 : 0);
}
}
如果有更简洁的方法,欢迎留言给博主。
MapReduce寻找共同好友的更多相关文章
- python版mapreduce题目实现寻找共同好友
看到一篇不知道是好好玩还是好玩玩童鞋的博客,发现一道好玩的mapreduce题目,地址http://www.cnblogs.com/songhaowan/p/7239578.html 如图 由于自己太 ...
- 用Mapreduce求共同好友
import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs ...
- mapreduce 查找共同好友
A:B,C,D,F,E,O B:A,C,E,K C:F,A,D,I D:A,E,F,L E:B,C,D,M,L F:A,B,C,D,E,O,M G:A,C,D,E,F H:A,C,D,E,O I:A, ...
- mapreduce求共同好友
逻辑分析 以下是qq的好友列表数据,冒号前是一个用户,冒号后是该用户的所有好友(数据中的好友关系是单向的) A:B,C,D,F,E,O B:A,C,E,K C:F,A,D,I D:A,E,F,L E: ...
- MapReduce案例-好友推荐
用过各种社交平台(如QQ.微博.朋友网等等)的小伙伴应该都知道有一个叫 "可能认识" 或者 "好友推荐" 的功能(如下图).它的算法主要是根据你们之间的共同好友 ...
- 大数据入门第九天——MapReduce详解(五)mapJoin、GroupingComparator与更多MR实例
一.数据倾斜分析——mapJoin 1.背景 接上一个day的Join算法,我们的解决join的方式是:在reduce端通过pid进行串接,这样的话: --order ,,P0001, ,,P0001 ...
- 中国移动飞信WAP登陆分析及脚本
中国移动飞信WAP网页版 http://f.10086.cn/im5/ 用WAP飞信登录并向好友发送信息,同时用wireshark抓包. 1.过滤POST表单提交数据包(wireshark规则: ht ...
- MapReduce实现二度好友关系
一.问题定义 我在网上找了些,关于二度人脉算法的实现,大部分无非是通过广度搜索算法来查找,犹豫深度已经明确了2以内:这个算法其实很简单,第一步找到你关注的人:第二步找到这些人关注的人,最后找出第二步结 ...
- 基于mapreduce的大规模连通图寻找算法
基于mapreduce的大规模连通图寻找算法 当我们想要知道哪些账号是一个人的时候往往可以通过业务得到两个账号之间有联系,但是这种联系如何传播呢? 问题 已知每个账号之间的联系 如: A B B C ...
随机推荐
- 【Splay】bzoj1500(听说此题多码上几遍就能不惧任何平衡树题)
1500: [NOI2005]维修数列 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 15112 Solved: 4996[Submit][Statu ...
- Linux常用命令之文件处理命令
注:由于Linux操作系统有些目录不能轻易操作,特此建议大家在家目录home,或root.tmp目录下练习命令,以免带来不必要的损失 一.查询目录中的内容:ls 命令格式:ls [选项] [文件或目录 ...
- K:平衡二叉树(AVL)
相关介绍: 二叉查找树的查找效率与二叉树的形状有关,对于按给定序列建立的二叉排序树,若其左.右子树均匀分布,则查找过程类似于有序表的二分查找,时间复杂度变为O(log2n).当若给定序列原来有序,则 ...
- 使用Anaconda搭建TensorFlow-GPU环境
前言: 对于深度学习来说,各种框架torch,caffe,keras,mxnet,tensorflow,pandapanda环境要求各一,如果我们在一台服务器上部署了较多的这样的框架,那么各种莫名的冲 ...
- 数据挖掘之聚类算法Apriori总结
项目中有时候需要用到对数据进行关联分析,比如分析一个小商店中顾客购买习惯. package com.data.algorithm; import com.google.common.base.Spli ...
- DOM拓展
DOM拓展 1.选择符API 所谓选择符API即是根据css选择符选择与某个模式相匹配的DOM元素,jQuery的核心就是通过css选择符查询DOM文档取得元素的引用,从而抛弃了原有繁琐的getELe ...
- ssh爆破篇
使用pramiko模块 代码图: import paramiko import sys import time def cont(): b=open(sys.argv[1],'r').read().s ...
- Vjios P1736 铺地毯【暴力,思维】
铺地毯 描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有n张地毯,编号从1到n.现在将这些地毯按照编号从小到大的顺序平行于坐标轴 ...
- hdu_1029_hash/map
http://acm.hdu.edu.cn/showproblem.php?pid=1029 太水了,一次过,直接上代码吧,只想说最愚蠢的hash都要比map快! #include<cstdio ...
- c++(循环单向链表)
前面的博客中,我们曾经有一篇专门讲到单向链表的内容.那么今天讨论的链表和上次讨论的链表有什么不同呢?重点就在这个"循环"上面.有了循环,意味着我们可以从任何一个链表节点开始工作,可 ...