转自http://blog.csdn.net/nzfxx/article/details/51615439

1.特点及概念介绍

    下面给大家讲解一下"二分法查找"这个java基础查找算法,那么什么是二分法呢?其实所谓的"二分法",就是一分为二的意思,综合起来理解就是一分为二的查找,但大家记住了,二分法是建立在"已经按顺序排好"的基础条件上,如果大家把这个二分法查找理解清楚了,那么会有助于你更好的理解快速排序,下面我就罗列出该算法的特点:

    1.定义起始位置start(0角标),定义末位置end(lenght-1位置,即最后一位)
2.无限循环的查找一个值,先看看该值是不是在中间mid角标,mid=(star+end)/2
3.如果该值大于mid角标对应值,那么start变成mid的右边一位,如果小于,那么end就变成mid的左边一位,这样会极其的高效.
5.找到值就返回值或打印,找不着也返回-1或打印,并停止循环.
  6.在排序中关键字比较次数同记录初始排列无关的

 


2.图文描述过程


现有需求:

1.有一个已经排列好顺序的从小到大的数组.
2.请查询一个数字所在的角标位置.
3.如果元素不存在,请给出如果插入,那么应该插入的位置.

3.代码详情(参考 https://www.cnblogs.com/snowcan/p/6244361.html)


public class BinaryInsertSort {

    public static void main(String[] args) {
// TODO Auto-generated method stub
int[] arr = {3,1,5,7,2,4,9,6};
new BinaryInsertSort().binaryInsertSort(arr);
} /**
* 折半插入排序算法的实现
*/
public void binaryInsertSort(int[] arr){
int n=arr.length;
int i,j;
for (i=1;i<n;i++){
int temp=arr[i];
int low=0;
int high=i-1;
while (low<=high){
int mid=low+(high-low)/2;
if(temp>arr[mid]){
low=mid+1;
}else if(temp<arr[mid]){
high=mid-1;
}
}
for (j=i-1;j>=low;j--){
arr[j+1]=arr[j];
}
arr[low]=temp;
/**
* 打印每次循环的结果
*/
printProcess(arr,n,i);
}
/**
* 打印排序结果
*/
printResult(arr,n);
} /**
* 打印排序的最终结果
* @param arr
* @param n
*/
private void printResult(int[] arr, int n) {
System.out.print("最终排序结果:");
for(int j=0;j<n;j++){
System.out.print(" "+arr[j]);
}
System.out.println();
} /**
* 打印排序的每次循环的结果
* @param arr
* @param n
* @param i
*/
private void printProcess(int[] arr, int n, int i) {
System.out.print("第"+i+"次:");
for(int j=0;j<n;j++){
System.out.print(" "+arr[j]);
}
System.out.println();
}
}
 
运行结果:
第1次: 1 3 5 7 2 4 9 6
第2次: 1 3 5 7 2 4 9 6
第3次: 1 3 5 7 2 4 9 6
第4次: 1 2 3 5 7 4 9 6
第5次: 1 2 3 4 5 7 9 6
第6次: 1 2 3 4 5 7 9 6
第7次: 1 2 3 4 5 6 7 9
最终排序结果: 1 2 3 4 5 6 7 9

4.总结:

二分法查找,又称折半查找,大家需要记住的重点有

1.优点是比较次数少,查找速度快,平均性能好;
其缺点是要求待查表为有序表,且插入删除困难。
因此,折半查找方法适用于不经常变动而查找频繁的有序列表。它的算法要求是必须是顺序存储结构,必须有序排列2.确定最左边的start,最右边的end
3.无限循环当中找mid角标对应的值,start和end会根据情况改变
4.当发现start和end交叉,那么证明找不到,即如果放入该元素,那么就应该放在此时的start位置.
5.使用二分查找算法在一个有序序列中查找一个元素的时间复杂度为(logn )。
原因:折半查找,每次都是1/2,设寻找t次,等式为2t =n,n为数据的总数,倒过来就答案B。
总共有n个元素,渐渐跟下去就是n,n/2,n/4,....n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数,由于你n/2^k取整后>=1,即令n/2^k=1
6.设有序顺序表中有n个数据元素,则利用二分查找法查找数据元素X的最多比较次数不超过 log2n+1
因为二分查找每次排除掉一半的不适合值,所以对于n个元素的情况:
一次二分剩下:n/2
两次二分剩下:n/2/2 = n/4
......
m次二分剩下:n/(2^m)
在最坏情况下是在排除到只剩下最后一个值之后得到结果,所以为
 n/(2^m)=1;
  2^m=n;

  此时时间复杂度为log2(n)

  再与最后一个元素比较复杂度+1

  所以时间复杂度为:log2(n)+1
 

"二分法"-"折半法"-查找算法-之通俗易懂,图文+代码详解-java编程的更多相关文章

  1. 折半插入排序 之通俗易懂,图文+代码详解-java编程

    转自http://blog.csdn.net/nzfxx/article/details/51615439 1.特点及概念介绍 下面给大家讲解一下"二分法查找"这个java基础查找 ...

  2. 《机器学习实战》kNN算法及约会网站代码详解

    使用kNN算法进行分类的原理是:从训练集中选出离待分类点最近的kkk个点,在这kkk个点中所占比重最大的分类即为该点所在的分类.通常kkk不超过202020 kNN算法步骤: 计算数据集中的点与待分类 ...

  3. 关于折半法查找的一些总结以及ArrayList类的总结

    一.折半法查找的总结(这算法很好理解,但我花了好久琢磨他有啥用.....) 1.实际意义 折半法查找主要是为了能够很快在一个数组中找出我们所需要的那个元素,与往常我们通过一个一个比较的方法不同,折半法 ...

  4. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  5. Django--filter()-字段查找(双下划线的使用详解)

    Django--filter()-字段查找(双下划线的使用详解) 在了解django中的字段查找的同时,让我们先熟悉一下比较符: 大于--gt-(greater than) 小于--lt-(less ...

  6. Ubuntu下安装JDK图文教程详解 jdk-java6-30 .bin 的处理方法

    Ubuntu下安装JDK图文教程详解 jdk-java6-30 .bin 的处理方法: https://blog.csdn.net/mingjie1212/article/details/485250 ...

  7. SSD算法及Caffe代码详解(最详细版本)

    SSD(single shot multibox detector)算法及Caffe代码详解 https://blog.csdn.net/u014380165/article/details/7282 ...

  8. IP地址,子网掩码,网段表示法,默认网关,DNS服务器详解,DNS域名设计

    本文参考:<计算机网络: IP地址,子网掩码,网段表示法,默认网关,DNS服务器详解> IP地址 概述 计算机要实现网络通信,就必须要有一个用于快速定位的网络地址.IP地址就是计算机在网络 ...

  9. c++ LeetCode(初级数组篇)十一道算法例题代码详解(一)

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/10940636.html 唉!最近忙着面试找实习,然后都是面试的很多是leetcode的算法题, ...

随机推荐

  1. Log4j.properties 配置详解

    一.Log4j简介 Log4j有三个主要的组件:Loggers(记录器),Appenders (输出源)和Layouts(布局).这里可简单理解为日志类别,日志要输出的地方和日志以何种形式输出.综合使 ...

  2. javascript语言扩展:可迭代对象(1)

    在ECMAScript中我们知道可以通过for in语句进行对象属性的遍历,当然这些属性不包括继承而来的属性: var ary = [1,2,3,"aa",4]; for(i in ...

  3. Qt5中this application has requested the runtime to terminate it in an unusual way 无法运行问题的解决

    在windows平台使用Qt5.8mingw版写出的程序,在Qt中运行正常,而以release的形式编译并且补充完必要的dll文件后,在其他电脑上运行出现了以下问题: 经过查阅许多资料和亲身实验,终于 ...

  4. 返回空的list集合*彻底删除删除集合*只是清空集合

    ---------- 要求返回空的List集合----------- List<String> allList = Collections.emptyList();// 返回空的List集 ...

  5. Java的运行原理

    在Java中引入了虚拟机的概念,即在机器和编译程序之间加入了一层抽象的虚拟的机器.这台虚拟的机器在任何平台上都提供给编译程序一个的共同的接口.编译程序只需要面向虚拟机,生成虚拟机能够理解的代码,然后由 ...

  6. Linux的vi详解

    Vi简介1. Vi是一种广泛存在于各种UNIX和Linux系统中的文本编辑程序.2. Vi不是排版程序,只是一个纯粹的文本编辑程序.3. Vi是全屏幕文本编辑器,它没有菜单,只有命令.4. Vi不是基 ...

  7. Http持久连接与HttpClient连接池

    一.背景 HTTP协议是无状态的协议,即每一次请求都是互相独立的.因此它的最初实现是,每一个http请求都会打开一个tcp socket连接,当交互完毕后会关闭这个连接. HTTP协议是全双工的协议, ...

  8. subclipse下svn: E200015: authentication cancelled问题的解决

    今天要把新建的一个项目要share到一个Ubuntu下SVN服务上,总是让我不断的重复输入密码,实在是太要命了,点取消就报错如标题,Google了一下,最后在后面参考那篇帖子的启发下,到SVN配置里面 ...

  9. Django Channels简明实践

    1.安装,如果你已经安装django1.9+,那就不要用官方文档的安装指令了,把-U去掉,直接用: sudo pip install channels 2.自定义的普通Channel的名称只能包含a- ...

  10. 测试驱动开发 TDD

    一.详解TDD 1.1.TDD概念 :Test Drived Develop 测试驱动开发是敏捷开发中的一项核心实践和技术,也是一种方法论.TDD的原理是在开发功能代码之前,编写单元测试用例代码,测试 ...