Description

Input

Output

Sample Input

3
2 1
3 2
5 1

Sample Output

8
6
75

HINT

90号机器人有10个老师,加上它自己共11个。其中政客只有15号;军人有3号和5号;学者有8个,它们的编号分别是:2,6,9,10,18,30,45,90。


$\sum\limits_{d|n}\phi(d)=n$

因此总和为n。

只需要求约数中$\mu$为1的$\varphi$和,$\mu$为-1的$\varphi$和。

这样,我们每个质因子只有一次贡献。

这次贡献会把之前的$\mu$从1变到-1,从-1变到1。

又因为phi是积性函数,每次都需要乘上$\varphi(p)=p-1$。

要注意2不是奇质数。一个数的约数不考虑1。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
#define mod 10000
int n,m,p,k,f[1050],g[1050];
int qp(int x,int y) {
int re=1;
while(y) {
if(y&1) re=re*x%mod;
x=x*x%mod;
y>>=1;
}
return re;
}
int main() {
scanf("%d",&n);
m=1;
int i;
f[0]=1;
for(i=1;i<=n;i++) {
scanf("%d%d",&p,&k); m=m*qp(p,k)%mod;
if(p!=2) {
f[i]=(f[i-1]+g[i-1]*(p-1)%mod)%mod;
g[i]=(g[i-1]+f[i-1]*(p-1)%mod)%mod;
}else {
f[i]=f[i-1];
g[i]=g[i-1];
}
}
f[n]=(f[n]-1+mod)%mod;
printf("%d\n%d\n%d\n",f[n],g[n],((m-f[n]-g[n]-1)%mod+mod)%mod);
}

BZOJ_1408_[Noi2002]Robot_数学的更多相关文章

  1. 【BZOJ1408】[Noi2002]Robot DP+数学

    [BZOJ1408][Noi2002]Robot Description Input Output Sample Input 3 2 1 3 2 5 1 Sample Output 8 6 75 HI ...

  2. 【数学 exgcd】bzoj1407: [Noi2002]Savage

    exgcd解不定方程时候$abs()$不能乱加 Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, L ...

  3. P1516 青蛙的约会和P2421 [NOI2002]荒岛野人

    洛谷 P1516 青蛙的约会 . 算是手推了一次数论题,以前做的都是看题解,虽然这题很水而且还交了5次才过... 求解方程\(x+am\equiv y+an \pmod l\)中,\(a\)的最小整数 ...

  4. 数学思想:为何我们把 x²读作x平方

    要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...

  5. 速算1/Sqrt(x)背后的数学原理

    概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...

  6. MarkDown+LaTex 数学内容编辑样例收集

    $\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...

  7. 深度学习笔记——PCA原理与数学推倒详解

    PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...

  8. Sql Server函数全解<二>数学函数

    阅读目录 1.绝对值函数ABS(x)和返回圆周率的函数PI() 2.平方根函数SQRT(x) 3.获取随机函数的函数RAND()和RAND(x) 4.四舍五入函数ROUND(x,y) 5.符号函数SI ...

  9. *HDU 2451 数学

    Simple Addition Expression Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

随机推荐

  1. 大数据小视角1:从行存储到RCFile

    前段时间一直在忙碌写毕设与项目的事情,很久没有写一些学习心得与工作记录了,开了一个新的坑,希望能继续坚持写作与记录分布式存储相关的知识.为什么叫小视角呢?因为属于随想型的内容,可能一个由小的视角来审视 ...

  2. [坑况]——windows升级node最新版本报错【npm install -g n】

    我本来是下载一个vue-cli的,然后技术日新月异,告知我要先把我的node升级到8以上(目前是v6.1.13) 升级就升级,升级就报错 尝试第一种方法,网上最多的一种方法,估计也是成功最多的一种吧( ...

  3. web3.js

      安装 别按照官网上面 npm install web3 下载,我已经吃过一次亏了 npm initnpm install ethereum/web3.js --save   web3.isConn ...

  4. 【转】Elasticsearch学习

    原作者:铭毅天下,原文地址:blog.csdn.net/laoyang360 https://blog.csdn.net/wojiushiwo987/article/details/52244917 ...

  5. LruCache的使用及原理

    采用LRU算法实现的话就是将最老的数据删掉.利用LRU缓存,我们能够提高系统的性能.   一,是它本身已经实现了按照访问顺序的存储,也就是说,最近读取的会放在最前面,最不常读取的会放在最后(当然,它也 ...

  6. Jmeter——HTTP协议的接口压力测试环境搭建

     文章版权由作者小小小丝和博客园共有,若转载请于明显处标明出处:http://rpc.cnblogs.com/metaweblog/xxxs JDK 是整个Java的核心,包括了Java运行环境.Ja ...

  7. [开源]基于ffmpeg和libvlc的视频剪辑、播放器

    [开源]基于ffmpeg和libvlc的视频剪辑.播放器 以前研究的时候,写过一个简单的基于VLC的视频播放器.后来因为各种项目,有时为了方便测试,等各种原因,陆续加了一些功能,现在集成了视频播放.视 ...

  8. 分布式服务通讯框架XXL-RPC

    <分布式服务通讯框架XXL-RPC>    一.简介 1.1 概述 XXL-RPC 是一个分布式服务通讯框架,提供稳定高性能的RPC远程服务调用功能.现已开放源代码,开箱即用. 1.2 特 ...

  9. 洛谷 P1450 解题报告

    P1450.硬币购物 题目描述 硬币购物一共有\(4\)种硬币.面值分别为\(c1,c2,c3,c4\).某人去商店买东西,去了\(tot\)次.每次带\(d_i\)枚\(c_i\)硬币,买\(s_i ...

  10. linux基础和vim基本使用

    Liunx基础 1. 目录  /:根目录,一般根目录只存放目录,在linux下有且只有一个根目录.所有的东西都是从这里开始,例如:/home就是先从根目录/开始,再进入到home目录.  /bin ...