Clean http handlers in Go
Introduction
For this blog post we are going to take a look at the http.HandlerFunc
type and how we can improve it to make more elegant and clean handlers. Following the idioms of Go and staying compatible with the standard library.
Handlers
In Go A Handler
is a type which responds to an HTTP request.
type Handler interface {
ServeHTTP(http.ResponseWriter, *http.Request)
}
Any structure implementing the ServeHTTP
method from the interface can be used to handle http requests. This is very powerful and flexible. It is easy to add http handling capabilities to any structure in your program.
Altough most of the time this is not the way a lot of people do it. It is still limited to the fact that you need to implement it on a structure which is not always what you would like. A single function would be easier to use than implementing an interface. Luckily Go has an solution for this.
Say Hi to the http.HandlerFunc
type HandlerFunc func(http.ResponseWriter, *http.Request)
The HandlerFunc is basically an adapter for the Handler interface. Because the HandlerFunc is a type it can implement methods on that type. Note that the type is actually a function so any function containing the same signature as the HandlerFunc can be easily casted to this type. When passing it as a parameter this happens implicitly and you wont even know the difference.
Ok cool, so here we are we’ve seen how the Handler and HandlerFunc works, but how can we actually extend them? And why do we even need to extend them, they are already powerfull aren’t they?
If you have ever written more complex http request handlers in Go you probably know that they can grow really big because of the verbose error handling and early returns.
func IndexHandler(w http.ResponseWriter, r *http.Request) {
// Do something
v, err := ...
// check for err
if err != nil {
w.WriteHeader(http.StatusInternalServerError)
w.Write([]byte(err.Error()))
return
}
// More code
// ...
}
This is common code and because the functions returns void we have to terminate the function early if we wan’t to stop the function from writing more to the given io.Writer
. Ofcourse an else would be possible here aswell but that would just decrease the readability, because statements will be more and more nested and harder to follow.
But most of the functions in Go returns errors when something failed instead of notifying through an given pointer in the parameters (after all we aren’t programming in C right)?
So how can we change this and still make use of the great integration with the standard library and the http.Handler
interface. For this we are going to take the idea of http.HandlerFunc and create our own adapter for the Handler interface which can work with return types.
But first we need to find the perfect return types for our functions. Only an error would not be sufficient because we still have to set the status code on the ResponseWriter
. We could make a generic struct which can contain most of the information we would like to send to the caller, this would look like this:
// Map of string to string where the key is the key for the header
// And the value is the value for the header
type Headers map[string]string
// Generic response object for our handlers
type Response struct {
// StatusCode
Status int
// Content Type to writer
ContentType string
// Content to be written to the response writer
Content io.Reader
// Headers to be written to the response writer
Headers Headers
}
The same as how the HandlerFunc works we create a type alias for our function definition. The type will return the new created response object by us.
type Action func(r *http.Request) *Response
We omitted the response writer as paramater because we don’t need it in our functions. We won’t be writing to the response writer from inside our function (this breaks the paradigm we want to accomplish). The response struct is the way for us to write content to the response writer. Now we need to make our Action type compatible with thehttp.Handler
interface by implementing the ServeHTTP
method on it.
func (a Action) ServeHTTP(rw http.ResponseWriter, r *http.Request) {
if response := a(r); response != nil {
if response.ContentType != "" {
rw.Header().Set("Content-Type", response.ContentType)
}
for k, v := range response.Headers {
rw.Header().Set(k, v)
}
rw.WriteHeader(response.Status)
_, err := io.Copy(rw, response.Content)
if err != nil {
rw.WriteHeader(http.StatusInternalServerError)
}
} else {
rw.WriteHeader(http.StatusOK)
}
}
A few things going on here. First we declare the method on the function and we call the type Action
which is in essence just a plain function. So every function with the same type signature as the Action can be converted to this Action
type. As we know our Action
type gave back a pointer to a Response struct. For this to work correctly we need to check if the pointer is not nil. Otherwise the program would panic when calling the Status and Message property on them. By using a pointer it gives us also the extra benefit of that we can return nil in our functions and nothing will be done (the default value of 200 OK will be send to the caller). We still have the same flexibility of the regular http.HandlerFunc
and we are in control of when something will be written to the response writer.
Ok cool, with this in place we have some nice functions to work with. We can now return in our handlers and everything will be fine. We can now write some wrapper functions so we don’t have to manually create our Response struct.
Because our response struct works with an io.Reader
interface we cannot just simply return the error in there so we need to first create a wrapper for this. We use a io.Reader here because this way we stay flexible, we can return any reader (even a stream reader) in our handlers and it will be streamed to the response writer.
func Error(status int, err error, headers Headers) *Response {
return &Response{
Status: status,
Content: bytes.NewBufferString(err.Error()),
Headers: headers,
}
}
This function pretty much explains itself. We pass in an error and we let the function convert it to an io.Reader with using an internal buffer. We can use it like this:
func Index(r *http.Request) *Response {
return Error(404, errors.New("not found"), nil)
}
Sweet! that looks way more clear than before. Let’s take it a step further, nowadays a lot of people are making rest api’s which spit out JSON to the caller. We can easily create a function for this.
type errorResponse struct {
Error string `json:"error"`
}
func ErrorJSON(status int, err error, headers Headers) *Response {
errResp := errorResponse{
Error: err.Error(),
}
b, err := json.Marshal(errResp)
if err != nil {
return Error(http.StatusInternalServerError, err, headers)
}
return &Response{
Status: status,
ContentType: "application/json",
Content: bytes.NewBuffer(b),
Headers: headers,
}
}
NOTE We can use the ErrorJSON
functions again in our handlers. And it will do the conversion to JSON for us.
func Index(r *http.Request) *Response {
return ErrorJSON(http.StatusNotFound, errors.New("not found"), nil)
}
and it will print:
{
"error": "not found"
}
With those helper functions we can create responses for every content-type you would like; ErrorXML
etc. We’ve seen error handling and how we can elegant create custom responses for our errors. How does this work for returning something else than en error?
We can create a generic functions (same as the error function) for regular data aswell.
func Data(status int, content []byte, headers Headers) *Response {
return &Response{
Status: status,
Content: bytes.NewBuffer(content),
Headers: headers,
}
}
Example usage:
func Index(r *http.Request) *Response {
return Data(http.StatusOK, []byte("test"), nil)
}
Same as the errors we could take this a step further and implement some helper functions who will do marshalling of data to JSON.
func DataJSON(status int, v interface{}, headers Headers) *Response {
b, err := json.Marshal(v)
if err != nil {
return ErrorJSON(http.StatusInternalServerError, err, headers)
}
return &Response{
Status: status,
ContentType: "application/json",
Content: bytes.NewBuffer(b),
Headers: headers,
}
}
Here we accept an interface in our method and let the json package take care of the conversion between the incoming v and the byte array. If we encounter some error during marshalling we just return our ErrorJSON
function and the caller will be notified with the error (note this should probably be logged instead of returning the actual error to the caller). We do the same trick as in our ErrorJSON
method and set the right content type. Usage is the same as all the other methods.
type temp struct {
Message string `json:"msg"`
}
func Index(r *http.Request) *Response {
return DataJSON(http.StatusOK, temp{"test"}, nil)
}
We can also create our helper function for the standard io.Reader this way we can return any reader we would like. This could be a external http or anything implementing theio.Reader
interface.
func DataWithReader(status int, r io.Reader, headers Headers) *Response {
return &Response{
Status: status,
Content: r,
Headers: headers,
}
}
With this in place we have all the flexibility we would like and can return anything we can even think off. We eliminated the verbose writing to the response writer and made our handlers look way cleaner and easier to follow. Without losing perfomance or flexibility.
Compatibility with the standard library
Because our handlers are still of type http.Handler
we can use them anywhere where the http.Handler
interface is used.
Lets try it out! We are going to create middleware for loggin the details about a request
func logger(next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
log.Printf("[%s] User agent => %s Remote addr => %s", r.Method, r.UserAgent(), r.RemoteAddr)
next.ServeHTTP(w, r)
})
}
We can create a route in main
func main() {
http.Handle("/test", logger(Action(Index)))
http.ListenAndServe(":8080", nil)
}
And it all works. We can chain the middleware and use existing middlewares with our new handler types.
Conclusion
The http.Handler
interfaces gives a lot of flexibility and by using type aliasing in Go we can easily convert our functions to actual methods which implement the Handler
interface. It is even possible to extend our Response object with more options. This is all up to you and you can modify the wrappers to use the new options you define. (Extra headers for example).
the full code can be found here Github Gist. Let me know what you think about it and what could be improved.
Thanks for reading and happy coding! (y)
Clean http handlers in Go的更多相关文章
- 转: GUI应用程序架构的十年变迁:MVC,MVP,MVVM,Unidirectional,Clean
十年前,Martin Fowler撰写了 GUI Architectures 一文,至今被奉为经典.本文所谈的所谓架构二字,核心即是对于对于富客户端的 代码组织/职责划分 .纵览这十年内的架构模式变迁 ...
- A little bit about Handlers in JAX-WS
by Rama Pulavarthi Handlers are message interceptors that can be easily plugged in to the JAX-WS run ...
- 【C#】转一篇MSDN杂志文:ASP.NET Pipeline: Use Threads and Build Asynchronous Handlers in Your Server-Side Web Code
序:这是一篇发表在2003年6月刊的MSDN Magazine的文章,现在已经不能在线阅读,只提供chm下载.讲的是异步请求处理那些事,正是我上一篇博文涉及的东西(BTW,事实上这篇杂志阐述了那么搞然 ...
- Android 程序架构: MVC、MVP、MVVM、Unidirectional、Clean...
摘选自:GUI 应用程序架构的十年变迁:MVC.MVP.MVVM.Unidirectional.Cleanhttps://zhuanlan.zhihu.com/p/26799645 MV* in An ...
- GUI应用程序架构的十年变迁:MVC,MVP,MVVM,Unidirectional,Clean
十年前,Martin Fowler撰写了 GUI Architectures 一文,至今被奉为经典.本文所谈的所谓架构二字,核心即是对于对于富客户端的 代码组织/职责划分 .纵览这十年内的架构模式变迁 ...
- Error:Execution failed for task ':app:clean'.
运行时出现 Error:Execution failed for task ':app:clean'. 错误,Builld->Clean Project即可.
- 学习Maven之Maven Clean Plugin
1.maven-clean-plugin是个什么鬼? maven-clean-plugin这个插件用maven的人都不陌生.我们在执行命令mvn clean时调用的就是这个插件. 这个插件的主要作用就 ...
- AndroidStudio中make Project、clean Project、Rebuild Project的区别
1.Make Project:编译Project下所有Module,一般是自上次编译后Project下有更新的文件,不生成apk. 2.Make Selected Modules:编译指定的Modul ...
- Clean Old Kernels on CentOS
1. Check Installed Kernels $ rpm -q kernel 2. Clean Old Kernels ## need Install yum-utils ## ## Pack ...
随机推荐
- ubuntu14.04使用rails连接mysql数据库
rails自带的sqlite3各方面都不错,但是免费版缺少一个致命功能:加密码!虽说第三方有编译好的二进制版的加密版,但咱先不折腾鸟;直接上mysql吧. ubuntu安装mysql非常简单,先不聊; ...
- 多线程编程 NSOperation
前言 1.NSThread的使用,虽然也可以实现多线程编程,但是需要我们去管理线程的生命周期,还要考虑线程同步.加锁问题,造成一些性能上的开销.我们也可以配合使用NSOperation和NSOper ...
- 我对Spring的理解。
1.Spring实现了工厂模式的工厂类(在这里有必要解释清楚什么是工厂模式),这个类名为BeanFactory(实际上是一个接口),在程序中通常BeanFactory的子类ApplicationCon ...
- Javascript、CSS、HTML面试题
1 JS中的三种弹出式消息提醒(警告窗口.确认窗口.信息输入窗口)的命令是什么? alert confirm prompt 2声明一个已经存在一个CSS有几种方式? 1.导入一个已经存 ...
- 修改访问的后缀contant
设置Struts 2处理的请求后缀及Action调用 1.在struts2中默认处理的请求后缀为action,我们可以修改struts.xml 和struts.properties来修改默认的配置,在 ...
- 经典的java中return和finally问题!
经典的java中return和finally问题! 标签: 杂谈 分类: java学习 前一段时间 参加公司的笔试问了这个问题,回来一查才知道当时自己做错了,百思不得其解,上网查到下面的程序,但是运行 ...
- Memocache 详细的工作机制
memcached集群 2013-04-26 13:56:37| 分类: memcached | 标签:集群 memcached |举报|字号 订阅 集群架构方面的问题 memcach ...
- 手把手教你用Jenkins自动发布dotnet core程序
Jenkins部分 首先,我们要有个Jenkins咯,下载链接:https://jenkins.io/download/ 我们安装官网教程安装好jenkins,安装教程略.... 嗯?不是说好手把手么 ...
- openssh升级的坑爹之路
安装Zlib http://zlib.net/zlib-1.2.8.tar.gz tar -zxvf zlib-1.2.8.tar.gz cd zlib-1.2.8 ./configure --sha ...
- 学会分析YUV数据
做视频采集与处理,自然少不了要学会分析YUV数据.因为从采集的角度来说,一般的视频采集芯片输出的码流一般都是YUV数据流的形式,而从视频处理(例如H.264.MPEG视频编解码)的角度来说,也是在原始 ...