化简式子

$M>=m+ans*(r-l+k)$

发现$M,m$确定时,总区间长度越小越好,于是假定右端点为最小值$M+ans*l>=m+ans*r+ans*k$,

右面都确定了,但最大值仍然有两种情况,一是最大值就在要求的区间内,二是在要求的区间右侧,

对于第一种情况,直接把每个点的val扔进单调队列就可以了,第二种呢,因为要求区间长度最小,所以左端点即为$r-L+1$,单调队列维护$i-L+1~i$的最大值即可,

左端点为最小值也一样。

而且不需要判断在我们选的区间内是否有比$a[i]$更小的,因为那一定比这优,考虑过,

所以每次check直接正反扫就好了。

2017.11.7更新

原程序被hack,因为如果只能全选的话,最小值又不在两边,就不会枚举到最优解,所以强行往两侧各添加n个0即可。

代码已更正,可放心食用

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define N 150050
#define eps 1e-6
using namespace std;
int n,l,r,k;
int a[N];
double val[N];
int q1[N],q2[N],head1,head2,tail1,tail2;
bool check(double x){
head1=head2=;
tail1=tail2=;
for(int i=;i<=*n;i++){
int pos=i-l+;
double now=-;
if(pos>){
val[pos]=a[pos]+x*pos;
while(head1<=tail1&&val[pos]>val[q1[tail1]])tail1--;
q1[++tail1]=pos;
while(head1<=tail1&&q1[head1]<=i-r)head1++;
now=max(now,val[q1[head1]]);
}
while(head2<=tail2&&a[i]>a[q2[tail2]])tail2--;
q2[++tail2]=i;
while(head2<=tail2&&q2[head2]<=i-l)head2++;
if(i>n&&pos>){
now=max(now,a[q2[head2]]+x*(i-l+));
if(now>=a[i]+x*(i+k))return ;
}
}
head1=head2=;
tail1=tail2=;
for(int i=*n;i>=n+;i--){
int pos=i+l-;
double now=-;
if(pos<=*n){
val[pos]=a[pos]-x*pos;
while(head1<=tail1&&val[pos]>val[q1[tail1]])tail1--;
q1[++tail1]=pos;
while(head1<=tail1&&q1[head1]>=i+r)head1++;
now=max(now,val[q1[head1]]);
}
while(head2<=tail2&&a[i]>a[q2[tail2]])tail2--;
q2[++tail2]=i;
while(head2<=tail2&&q2[head2]>=i+l)head2++;
if(i<=*n&&pos<=*n){
now=max(now,a[q2[head2]]-x*(i+l-));
if(now>=a[i]-x*(i-k))return ;
}
}
return ;
}
int main(){
int T;scanf("%d",&T);
while(T--){
scanf("%d%d%d%d",&n,&k,&l,&r);
for(int i=n+;i<=*n;i++)scanf("%d",&a[i]);
double L=,R=,M;
while(L+eps<R){
M=(L+R)/2.0;
if(check(M))L=M;
else R=M;
}
printf("%0.4lf\n",M);
}
return ;
}

bzoj4476

bzoj4476 [Jsoi2015]送礼物的更多相关文章

  1. [BZOJ4476] [JSOI2015] 送礼物 (01分数规划+ST表)

    [BZOJ4476] [JSOI2015] 送礼物 (01分数规划+ST表) 题面 给出n,k,l,r和序列a,要求从a中选一段连续的区间[i,j]出来,使得M(i,j)-m(i,j)/(j-i+k) ...

  2. BZOJ4476 JSOI2015送礼物(分数规划+单调队列)

    看到这个式子当然先二分答案.得max-min-(j-i+k)ans>=0. 显然max-min相同的情况下所选区间长度越短越好,所以max和min都应该取在边界.那么实际上我们根本不用管端点是否 ...

  3. [BZOJ4476][JSOI2015]送礼物[分数规划+单调队列]

    题意 题目链接 分析 分数规划之后可以得到式子:\(max-min-r*mid+l*mid\geq k*mid\) . 贪心选择,肯定区间的端点是极小或者极大值.特殊处理区间长度 \(\leq L\) ...

  4. 【BZOJ4476】[Jsoi2015]送礼物 分数规划+RMQ

    [BZOJ4476][Jsoi2015]送礼物 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物.萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都排成 ...

  5. BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列

    BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店很神奇,所有出售的 ...

  6. P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表

    P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表 题目背景 \(JYY\) 和 \(CX\) 的结婚纪念日即将到来,\(JYY\) 来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店 ...

  7. luogu P6087 [JSOI2015]送礼物 二分 单调队列 决策单调性

    LINK:送礼物 原本想了一个 \(nlog^2\)的做法 然后由于线段树常数过大 T到30. 以为这道题卡\(log^2\)没想到真的有神仙写\(log^2\)的过了 是我常数大了 抱歉. 能过的\ ...

  8. JSOI 2015 送礼物

    [BZOJ4476] [JSOI2015]送礼物 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都 ...

  9. 「JSOI2015」送礼物

    「JSOI2015」送礼物 传送门 看到这题首先想到分数规划. 我们发现对于当前区间,如果它的最大值和最小值不是分居区间的两个端点的话,那么我们显然可以把两端多出去的部分舍掉,因为,在区间最大值最小值 ...

随机推荐

  1. Solr 新增、更新、删除索引

    solr-admin新增索引 [索引中无则新增,有则更新] 1.在doc标签和field标签中增加权重(boost),增加权重后,可以在搜索的时候做权重过滤. <add> <doc ...

  2. 超强js博客值得学习!!!

    再读ecmascript 摘要: 这几天,又花了点时间看了下ecmascript.以下是我摘录出来的一些理解.在此记录下.第一部分:关于变量对象的理解1) 什么是变量对象?数据的存取与读取机制,就是变 ...

  3. linux上安装redis的踩坑过程

    redis用处很广泛,我不再啰嗦了,我按照网上教程想在linux上安装下,开始了踩坑过程,网上买了一个linux centos7.3,滴滴云的,巨坑无比啊,不建议大家用这家的! redis 为4.0, ...

  4. SQL解决"双重职位的查询"

    双重身份问题: create table role_tab ( person char(5) not null, role  char(1) not null ) insert into role_t ...

  5. python3学习笔记4---引用http://python3-cookbook.readthedocs.io/zh_CN/latest/

    2018-03-01数据结构与算法(4) 1.16过滤序列元素 最简单的过滤序列元素的方法就是使用列表推导.比如: >>> mylist = [1, 4, -5, 10, -7, 2 ...

  6. Ocelot中文文档-转换Claims

    Ocelot允许用户访问claims并把它们转换到头部,请求字符串参数和其他claims中.这仅在用户通过身份验证后才可用. 用户通过身份验证之后,我们运行claims转换中间件.这个中间件允许在授权 ...

  7. Ubuntu 安装LAMP

    简要记录一下. 环境准备 虚拟机环境 lz@starnight:~$ sudo -i [sudo] password for lz: root@starnight:~# cat /etc/issue ...

  8. JavaScipt浅谈——全局变量和局部变量

    全局变量的作用域为所属的整个程序. 全局变量的定义形式有: (1)在函数外定义 (2)在函数内定义,但不加var声明        (3)使用 window.变量名 的形式定义         (4) ...

  9. THINKPHP 调试------输出sql语句

    echo $model->getLastSql();//$model为实例化的模板类

  10. C# 获取当前年份的周期,周期所在日期范围

    最近有一个项目要用到年份周期,用于数据统计图表展示使用,当中用到年份周期,以及年份周期所在的日期范围.当初设想通过已知数据来换算年份周期,经过搜索资料发现通过数据库SQL语句来做,反而更加复杂.现在改 ...