海量数据挖掘MMDS week2: LSH的距离度量方法
http://blog.csdn.net/pipisorry/article/details/48882167
海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之局部敏感哈希LSH的距离度量方法
Distance Measures距离度量方法
{There are many other notions of similarity(beyond jaccard similarity) or distance and which one to use depends on what type of data we have and what our notion of similar is.Beside it is possible to combine hash functions from a family,to get the s curve
affect that we saw for LSH applied to min-hash matrices.In fact, the construction is essentially the same for any LSH family.And we'll conclude this unit by seeing some particular LSH families, and how they work for the cosine distance and Euclidean distance.}
Euclidean distance Vs. Non-Euclidean distance 欧氏距离对比非欧氏距离
Note: dense: given any two points,their average will be a point in the space.And there is no reasonable notion of the average of points in the space.欧氏距离可以计算average,但是非欧氏距离却不一定。
Axioms of Distance Measures 距离度量公理
距离度量就满足的性质
Note: iff = if and only if [英文文献中常见拉丁字母缩写整理(红色最常见)]
欧氏距离
Note: 范数Norm:
给定向量x=(x1,x2,...xn)
L1范数:向量各个元素绝对值之和,Manhattan distance。
L2范数:向量各个元素的平方求和然后求平方根,也叫欧式范数、欧氏距离。
Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方
L∞范数:向量各个元素求绝对值,最大那个元素的绝对值
非欧氏距离
Note:
1. cosine distance: requires points to be vectors, if the vectors have real numbers as components, then they are essentially points in the Euclidean space.But the vectors could have integer components in which case the space is not Euclidean.
2. 编辑距离有两种方式:一种是直接将其中一个元音字符替换成另 一个,一种是先删除字符再插入另一个字符。
非欧氏距离及其满足公理性质的证明:
Jaccard Dist
Note: Proof中使用反证法:两个都不成立,即都相等时,minhash(x)=minhash(y)了。
Cosine Dist余弦距离
cosine distance is useful for data that is in the form of a vector.Often the vector is in very high dimensions.
Note:
1. The length of a vector from the origin is actually the normal Euclidian distance,what we call the L2 norm.
2. No matter how many dimensions the vectors have, any two lines that intersect, and P1 and P2 do intersect at the origin,they'll follow a plane.
3. if you project P1 onto P2,the length of the projection is the dot product, divided by the length of P2.Then the cosine of the angle between them is the ratio of adjacent(the dot product divided by P2) over hypotenuse(斜边, the length of P1).
Note: vectors here are really directions, not magnitudes.So two vectors with the same direction and different magnitudes are really the same vector.Even to vector and its negation, the reverse of the vector,ought to be thought of as the
same vector.
Edit distance编辑距离
子串的定义:one string is a sub-sequence of another if we can get the first by deleting 0 or more positions from the second.the positions of the deleted characters did not have to be consecutive.
计算x,y编辑距离的两种方式
Note: 第一种方式中我们可以逆向编辑:we can get from y to x by doing the same edits in reverse.delete u and v,and then we insert a to get x.
Hamming distance汉明距离
Reviews复习
Note:距离矩阵
he she his hers
he 1 3 2
she 4 3
his 3
from:http://blog.csdn.net/pipisorry/article/details/48882167
ref: 距离和相似性度量方法
海量数据挖掘MMDS week2: LSH的距离度量方法的更多相关文章
- 海量数据挖掘MMDS week2: 局部敏感哈希Locality-Sensitive Hashing, LSH
http://blog.csdn.net/pipisorry/article/details/48858661 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:非hash方法
http://blog.csdn.net/pipisorry/article/details/48914067 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week2: Nearest-Neighbor Learning最近邻学习
http://blog.csdn.net/pipisorry/article/details/48894963 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:基于hash的方法
http://blog.csdn.net/pipisorry/article/details/48901217 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week2: Association Rules关联规则与频繁项集挖掘
http://blog.csdn.net/pipisorry/article/details/48894977 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week7: 局部敏感哈希LSH(进阶)
http://blog.csdn.net/pipisorry/article/details/49686913 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week3:社交网络之社区检测:高级技巧
http://blog.csdn.net/pipisorry/article/details/49052255 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week5: 聚类clustering
http://blog.csdn.net/pipisorry/article/details/49427989 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week4: 推荐系统Recommendation System
http://blog.csdn.net/pipisorry/article/details/49205589 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
随机推荐
- 搭建 RabbitMQ Server 高可用集群
阅读目录: 准备工作 搭建 RabbitMQ Server 单机版 RabbitMQ Server 高可用集群相关概念 搭建 RabbitMQ Server 高可用集群 搭建 HAProxy 负载均衡 ...
- MySQL/MariaDB 在插入数据的时候提示 Incorrect string value
现象 今天开新工程,建表的时候弹出这玩意: what's this? 看起来好像是说我传入的内容不对? 可是仔细看看内容,没乱码,标准的中文字符串.想来是编码问题. 经过修改编码后,解决了问题. 解决 ...
- js动态加载js css文件,可以配置文件后辍,防止浏览器缓存
js的引用,在浏览器,或微信上访问经常会遇到文件改了,但就是没有更新的问题,使用此函数可以轻松解决缓存问题只需要把js的引用方式改为使用此函数加载即可 源码如下: /** * js动态加载js css ...
- 虚拟机访问互联网的方法 -- 以RedHat系为例
在虚拟机的三种网络模式中(Host-Only.桥接.NAT),能够实现虚拟机访问互联网的只有桥接与NAT模式,而Host-only主能实现虚拟机与主机两者间的通信.下面以RedHat系虚拟机系统为例, ...
- 为什么《Dive into Python》不值得推荐
2010 年 5 月 5 日更新:我翻译了一篇<<Dive Into Python>非死不可>作为对本文观点的进一步支持和对评论的回复,请见:http://blog.csdn. ...
- (译)快速指南:用UIViewPropertyAnimator做动画
翻译自:QUICK GUIDE: ANIMATIONS WITH UIVIEWPROPERTYANIMATOR 译者:Haley_Wong iOS 10 带来了一大票有意思的新特性,像 UIViewP ...
- Swift对象实例方法名混淆的解决
在Xcode7.x中,比如有以下一个类: class Foo{ func test(v:Int,before:Int)->Int{ return v + 1 } } 我可以直接这么做: let ...
- SuperVideo,一款直播,点播,投屏并有的app
应用名称:SuperVideo应用简介: 1.聚合海量视频,视频源来源于搜狐,乐视,优酷, 腾讯等主流视频网站的丰富视频内容,最新院线大片,热播剧随时看 2.基于百度云解码,享受云解码支持RMVB,M ...
- 一个整数数组,有n个整数,如何找其中m个数的和等于另外n-m个数的和?
int getSum(int* arr, int len) { int sum = 0; for (int i = 0; i < len; ++i) { sum += arr[i]; } ret ...
- IMDG产品功能扩展
开源IMDG通常都提供了SPI或其他接口,供用户自行扩展.以Hazelcast为例,我们可以用一些好玩的小工具增强其查询.Map和后端持久化的功能.这些小工具虽然看起来很小,但功能也非常强大. SQL ...