海量数据挖掘MMDS week2: LSH的距离度量方法
http://blog.csdn.net/pipisorry/article/details/48882167
海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之局部敏感哈希LSH的距离度量方法
Distance Measures距离度量方法
{There are many other notions of similarity(beyond jaccard similarity) or distance and which one to use depends on what type of data we have and what our notion of similar is.Beside it is possible to combine hash functions from a family,to get the s curve
affect that we saw for LSH applied to min-hash matrices.In fact, the construction is essentially the same for any LSH family.And we'll conclude this unit by seeing some particular LSH families, and how they work for the cosine distance and Euclidean distance.}
Euclidean distance Vs. Non-Euclidean distance 欧氏距离对比非欧氏距离
Note: dense: given any two points,their average will be a point in the space.And there is no reasonable notion of the average of points in the space.欧氏距离可以计算average,但是非欧氏距离却不一定。
Axioms of Distance Measures 距离度量公理
距离度量就满足的性质
Note: iff = if and only if [英文文献中常见拉丁字母缩写整理(红色最常见)]
欧氏距离
Note: 范数Norm:
给定向量x=(x1,x2,...xn)
L1范数:向量各个元素绝对值之和,Manhattan distance。
L2范数:向量各个元素的平方求和然后求平方根,也叫欧式范数、欧氏距离。
Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方
L∞范数:向量各个元素求绝对值,最大那个元素的绝对值
非欧氏距离
Note:
1. cosine distance: requires points to be vectors, if the vectors have real numbers as components, then they are essentially points in the Euclidean space.But the vectors could have integer components in which case the space is not Euclidean.
2. 编辑距离有两种方式:一种是直接将其中一个元音字符替换成另 一个,一种是先删除字符再插入另一个字符。
非欧氏距离及其满足公理性质的证明:
Jaccard Dist
Note: Proof中使用反证法:两个都不成立,即都相等时,minhash(x)=minhash(y)了。
Cosine Dist余弦距离
cosine distance is useful for data that is in the form of a vector.Often the vector is in very high dimensions.
Note:
1. The length of a vector from the origin is actually the normal Euclidian distance,what we call the L2 norm.
2. No matter how many dimensions the vectors have, any two lines that intersect, and P1 and P2 do intersect at the origin,they'll follow a plane.
3. if you project P1 onto P2,the length of the projection is the dot product, divided by the length of P2.Then the cosine of the angle between them is the ratio of adjacent(the dot product divided by P2) over hypotenuse(斜边, the length of P1).
Note: vectors here are really directions, not magnitudes.So two vectors with the same direction and different magnitudes are really the same vector.Even to vector and its negation, the reverse of the vector,ought to be thought of as the
same vector.
Edit distance编辑距离
子串的定义:one string is a sub-sequence of another if we can get the first by deleting 0 or more positions from the second.the positions of the deleted characters did not have to be consecutive.
计算x,y编辑距离的两种方式
Note: 第一种方式中我们可以逆向编辑:we can get from y to x by doing the same edits in reverse.delete u and v,and then we insert a to get x.
Hamming distance汉明距离
Reviews复习
Note:距离矩阵
he she his hers
he 1 3 2
she 4 3
his 3
from:http://blog.csdn.net/pipisorry/article/details/48882167
ref: 距离和相似性度量方法
海量数据挖掘MMDS week2: LSH的距离度量方法的更多相关文章
- 海量数据挖掘MMDS week2: 局部敏感哈希Locality-Sensitive Hashing, LSH
http://blog.csdn.net/pipisorry/article/details/48858661 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:非hash方法
http://blog.csdn.net/pipisorry/article/details/48914067 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week2: Nearest-Neighbor Learning最近邻学习
http://blog.csdn.net/pipisorry/article/details/48894963 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:基于hash的方法
http://blog.csdn.net/pipisorry/article/details/48901217 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week2: Association Rules关联规则与频繁项集挖掘
http://blog.csdn.net/pipisorry/article/details/48894977 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week7: 局部敏感哈希LSH(进阶)
http://blog.csdn.net/pipisorry/article/details/49686913 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week3:社交网络之社区检测:高级技巧
http://blog.csdn.net/pipisorry/article/details/49052255 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week5: 聚类clustering
http://blog.csdn.net/pipisorry/article/details/49427989 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week4: 推荐系统Recommendation System
http://blog.csdn.net/pipisorry/article/details/49205589 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
随机推荐
- Tomcat中的c3p0数据库连接池的释放
一个项目通过c3p0获得连接池,相关代码如下: public class JdbcUtil { // 连接池的核心类 private static ComboPooledDataSource data ...
- Android开发艺术探索第五章——理解RemoteViews
Android开发艺术探索第五章--理解RemoteViews 这门课的重心在于RemoteViews,RemoteViews可以理解为一种远程的View,其实他和远程的Service是一样的,Rem ...
- sorted函数返回一个新的列表就安全了吗?
arr=[[1,2,3],[4,2,3],[5,2,3]] x2=sorted(arr) print 'sorted',x2 print '-'*20 for ar in arr: ar.append ...
- 优先使用TimeUnit类中的sleep()
TimeUnit是什么? TimeUnit是java.util.concurrent包下面的一个类,TimeUnit提供了可读性更好的线程暂停操作,通常用来替换Thread.sleep(),在很长一段 ...
- Scala:数据类型和变量
http://blog.csdn.net/pipisorry/article/details/52902158 Scala数据类型 Scala 与 Java有着相同的数据类型,下表列出了 Scala ...
- Swift基础之两种选择星星的评价样式并获取星星的索引值
想练练手,所以封装了一个两种选择星星的评价样式的Demo,并且可以获取到点击的星星的索引值,方便记录值,上传数据时使用 首先创建View类,设计初始化方法,并且用到了枚举类型和代理方法 方式一:默认的 ...
- 2apt-get命令,deb包安装,源码安装
1 安装卸载软件 更新源服务器列表 sudovi /etc/apt/sources.list 更新完服务器列表后需要更新下源 sudoapt-get update 更新源 sudoapt-get in ...
- springMVC源码分析--动态样式ThemeResolver(二)
在上一篇博客springMVC源码分析--动态样式ThemeResolver(一)中我们介绍了多样式ThemeResolver的使用方法,接下来我们对源码进行简单的分析一下. ThemeResolve ...
- Latex居中
居中文本 环境:\begin{center} 第一行\\第二行\\...第n行 \end{center}.可以用\\[长度]来插入可以省略的额外行间距.在一个环境内部,可以用命令\centering来 ...
- Uva - Uva272 - TEX Quotes
TeX is a typesetting language developed by Donald Knuth. It takes source text together with a few ty ...