题面

Bzoj

Sol

状压很显然

重点在于转移:题目就相当与每\(p\)长度的车站必须有且仅有\(k\)个被经过

那么转移时状压的二进制一定要有\(k\)个一

且两个相邻转移的状态之间必须满足:设为\(i->j\),则\((i >> 1) \&j\)要有\(k-1\)个\(1\)

然后就可以加上矩阵快速幂优化,注意把满足要求的状态记下来,只有一百多个

我常数丑是我的错

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int Zsy(30031); IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, k, p, cnt[1024], que[150], len, pos; IL void Up(RG int &x, RG int y){
x += y;
if(x >= Zsy) x -= Zsy;
} struct Matrix{
int a[150][150]; IL Matrix(){
Fill(a, 0);
} IL int* operator [](RG int x){
return a[x];
} IL void Init(){
for(RG int i = 0; i < len; ++i) a[i][i] = 1;
} IL Matrix operator *(RG Matrix B){
RG Matrix C;
for(RG int i = 0; i < len; ++i)
for(RG int j = 0; j < len; ++j)
for(RG int l = 0; l < len; ++l)
Up(C[i][l], 1LL * a[i][j] * B[j][l] % Zsy);
return C;
}
} S, E, T; int main(RG int argc, RG char* argv[]){
n = Input(), k = Input(), p = Input();
for(RG int i = 0; i < (1 << p); ++i){
for(RG int x = i; x; x -= x & -x) ++cnt[i];
if(cnt[i] == k && (i & 1)) que[len++] = i;
}
for(RG int i = 0; i < len; ++i)
if(que[i] == (1 << k) - 1) pos = i;
for(RG int i = 0; i < len; ++i)
for(RG int j = 0; j < len; ++j)
if(cnt[(que[i] >> 1) & que[j]] == k - 1) T[i][j] = 1;
E.Init(), S[0][pos] = 1;
for(RG int i = n - k; i; i >>= 1, T = T * T)
if(i & 1) E = E * T;
S = S * E;
printf("%d\n", S[0][pos]);
return 0;
}

[HNOI2010]BUS 公交线路的更多相关文章

  1. 【BZOJ2004】[Hnoi2010]Bus 公交线路 状压+矩阵乘法

    [BZOJ2004][Hnoi2010]Bus 公交线路 Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1 ...

  2. 【BZOJ2004】[HNOI2010]Bus 公交线路

    [BZOJ2004][HNOI2010]Bus 公交线路 题面 bzoj 洛谷 题解 $N$特别大$P,K$特别小,一看就是矩阵快速幂+状压 设$f[S]$表示公交车状态为$S$的方案数 这是什么意思 ...

  3. bzoj 2004: [Hnoi2010]Bus 公交线路

    Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距 离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决 ...

  4. BZOJ2004:[HNOI2010]Bus 公交线路(状压DP,矩阵乘法)

    Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定 ...

  5. 【bzoj2004】[Hnoi2010]Bus 公交线路 状压dp+矩阵乘法

    题目描述 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计 ...

  6. [bzoj2004] [洛谷P3204] [Hnoi2010] Bus 公交线路

    Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距 离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决 ...

  7. [BZOJ 2004] [Hnoi2010] Bus 公交线路 【状压DP + 矩阵乘法】

    题目链接: BZOJ - 2004 题目分析 看到题目完全不会..于是立即看神犇们的题解. 由于 p<=10 ,所以想到是使用状压.将每个连续的 p 个位置压缩成一个 p 位 2 进制数,其中共 ...

  8. BZOJ 2004: [Hnoi2010]Bus 公交线路 [DP 状压 矩阵乘法]

    传送门 题意: $n$个公交站点,$k$辆车,$1...k$是起始站,$n-k+1..n$是终点站 每个站只能被一辆车停靠一次 每辆车相邻两个停靠位置不能超过$p$ 求方案数 $n \le 10^9, ...

  9. 【BZOJ 2004】: [Hnoi2010]Bus 公交线路

    题目链接: TP 题解:   所以说,超显眼的数据范围啊. 很显然我们对于每个P的区间都是要有k个站被bus停留,然后考虑转移的话应该是把这k个站里的某个bus往前走,那么转移也很显然了,n的范围很大 ...

  10. BZOJ2004: [Hnoi2010]Bus 公交线路

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2004 状压dp+矩阵乘法. f[i][s]表示从第i位至前面的i-k位,第i位必须取的状态. ...

随机推荐

  1. 打通MySQL的操作权限

    打通MySQL的操作权限 前面已经总结了<XAMPP的配置与使用>,虽然可以直接通过GUI控制面板去启动MySQL服务,但是有些相关的操作则需要在Windows中的CMD命令窗口中去对My ...

  2. 一个客户端一键安装环境和服务的shell脚本

    #!/bin/bash basepath=$(cd `dirname $0`; pwd)SHELL_DIR="${basepath}/shell"PACKAGE_DIR=" ...

  3. MySQL select语句直接导出数据

    select * into outfile '文件存放路径' from 表名; (先记下来,还未测试)

  4. dedecms调用文章内容

    使用织梦建站时,有时候需要调用某一文档的内容,但织梦默认没有相应的标签,这时就需要我们使用sql语句去抓取了. {dede:sql sql="SELECT aid,typeid,body F ...

  5. angular ng build --prod 打包报错解决方案

    使用以下代码  就不报错了 ng build --prod --no-extract-license    打包命令 使用以下代码  就不报错了 ng build --prod --no-extrac ...

  6. 一种解决eclipse中安装maven出错的方法

    1.安装步骤:https://jingyan.baidu.com/article/a17d5285feb4dd8099c8f26e.html 2.安装第三步的解决办法:m2e   路径换成  http ...

  7. 2道acm简单题(2010):1.猜数字游戏;2.字符串提取数字并求和;

    //第一题是猜数字的游戏.//题目:随即产生一个3位的正整数,让你进行猜数字,//如果猜小了,输出:"猜小了,请继续".//如果猜大了,输出:"猜大了,请继续" ...

  8. SQL 分组统计 行转列 CASE WHEN 的使用

    原文地址:http://blog.itpub.net/26451903/viewspace-733526 原文在分组统计部分  sql是有问题的     本文已将sql改正   已用红色标记  Cas ...

  9. SpringMVC的数据转换,格式化和数据校验

          在SpringMVC中,根据请求方法签名不同,将请求消息中的消息以一定的方式转换并绑定到请求方法的参数中,在请求信息到达真正调用处理方法的这一段时间内,SpringMVC还会完成很多其他的 ...

  10. probabilistic robotics_bayes filter

    贝叶斯滤波 执行测量后的后验概率: 执行测量前的先验概率: 执行测量后的后验概率推导 根据式2.23的推导方式 可推出 假定xt是complete,即xt可以完全决定测量结果,那么则有2.56式: 带 ...