NOI2001炮兵阵地
PS:本道题目建议在对状压dp有一定了解的基础下学习,如有不懂可以先去学一下状压dp入门
题目大意:给你n*m个格子,有些格子可以用来部署军队,用P表示,有些则不能,用H表示,如果在一个格子上部署了军队,则上下左右各2个格子都不能部署军队,也就是呈十字架状,看到数据范围(n<=100,m<=10)很容易想到使用状压dp,因为m列数最大只有10,我们可以压缩每一行的状态,最大只有(1<<10)-1种状态,但是由于这一行的状态对下一行以及下两行都有影响,我们需要一个三维数组来保存状态,dp[i][j][k],代表第i行状态为j,上一行状态为k最大能部署的军队数,那么我们应该就能推出状态转移方程:
dp[i][j][k]=max(dp[i][j][k],dp[i-1][k][l]+num[i])(l为上两行的状态,num[i]为状态为i时能部署的军队数)
但是有一个问题,就是n最大为10,但是我们的数组好像还是开不下,dp[110][1<<10][1<10]显然是超内存的,怎么办呢?我们其实可以抓住如果在一个格子上部署军队则左右两边各2个格子都不能部署军队这一点来预处理进而达到缩小内存的方法,那么怎么预处理呢,其实和那道入门题的判断方法是一样的,我们将某一个状态分别右移1位,2位,这样便得到三个状态,然后两两相与,如果都等于0说明这个状态是合法的,那么这样下来最多的状态数也只有60个,这样数组就足够用了
具体实现方法如下
in(n);in(m);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
char ch;
cin>>ch;
if(ch=='H') cur[i]|=<<(j-);//记得反过来存
}
}
然后就是保存每一行是否可以部署军队的操作,这里记得要将P和H反过来存,若为正着存,则后面不部署军队的情况是考虑不到的,应该很好理解吧
in(n);in(m);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
char ch;
cin>>ch;
if(ch=='H') cur[i]|=<<(j-);//记得反过来存
}
}
然后就是dp部分了,因为从第三行开始,后面的行的状态都与前面一行及两行的状态有关,因此我们先处理出第一行以及第二行的状态,以便后面的递推
第一行的时候我们是不需要判断前面的行数的,因此只需要判断这一行的状态是否和合法就行了
而第二行的时候我们则需要根据在第二行状态合法的前提下还需要根据第一行的状态看有没有冲突的的情况,这种情况是要舍去的,其他的就没什么好讲的了
for(int i=;i<=cnt;i++)//不用判断上一行
{
if(!(cur[]&can[i]))
{
dp[][i][]=max(dp[][i][],num[i]);
tot=max(tot,dp[][i][]);
}
}
//处理第一行
for(int i=;i<=cnt;i++)//只用判断上一行
{
if(!(cur[]&can[i]))
{
for(int j=;j<=cnt;j++)
{
if(!(cur[]&can[j]) && !(can[i]&can[j]))
{
dp[][i][j]=max(dp[][i][j],dp[][j][]+num[i]);
tot=max(tot,dp[][i][j]);
}
}
}
}
//处理第二行
其实后面的行数跟前面的判断差不多,就是先判断本行再判断上一行,再判断上两行,最判断这三个状态有没有冲突,只要有一个存在冲突,这种状态就是不合法的,那么我们就把它舍去
最后上个完整版代码
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<cstring>
#define in(i) (i=read())
using namespace std;
int read()
{
int ans=,f=; char i=getchar();
while(i<''||i>'') {if(i=='-') f=-; i=getchar();}
while(i>=''&&i<='') ans=(ans<<)+(ans<<)+i-'',i=getchar();
return ans*f;
}
int dp[][][];
int can[];
int cur[];
int num[];
int n,m,cnt,tot;
int get(int x)
{
int ans=;
for(int i=;i<=m;i++)
if((x&(<<(i-)))!=) ans++;//判断是否可以部署军队,若可以则ans++
return ans;
}
void init()
{
for(int i=;i<(<<m);i++) {
if(!(i&(i>>)) && !(i&(i>>)) && !((i>>)&(i>>))){//相邻之间没有1
can[++cnt]=i;
num[cnt]=get(i);
}
}
//cout<<cnt<<endl;-------算出来最大只有60
}
int main()
{
in(n);in(m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) {
char ch; cin>>ch;
if(ch=='H') cur[i]|=<<(j-);//记得反过来存
}
init();//预处理
for(int i=;i<=cnt;i++)//不用判断上一行
if(!(cur[]&can[i])){
dp[][i][]=max(dp[][i][],num[i]);
tot=max(tot,dp[][i][]);
}
//处理第一行
for(int i=;i<=cnt;i++)//只用判断上一行
{
if((cur[]&can[i])) continue;
for(int j=;j<=cnt;j++)
if(!(cur[]&can[j]) && !(can[i]&can[j])) {
dp[][i][j]=max(dp[][i][j],dp[][j][]+num[i]);
tot=max(tot,dp[][i][j]);
}
}
//处理第二行
for(int i=;i<=n;i++)//枚举行数,对后n-2行进行处理
for(int j=;j<=cnt;j++){//枚举第i行的状态
if((cur[i]&can[j])) continue;//判断本行是否有冲突
for(int k=;k<=cnt;k++){//若无则枚举下一行的状态
if((cur[i-]&can[k])) continue;//判断上一行状态是否有冲突
for(int l=;l<=cnt;l++){//枚举上上一行状态
if((cur[i-]&can[l])) continue;
if(!(can[j]&can[k]) && !(can[j]&can[l]) && !(can[k]&can[l])){//若都无冲突
dp[i][j][k]=max(dp[i][j][k],dp[i-][k][l]+num[j]);//状态转移
tot=max(tot,dp[i][j][k]);
}
}
}
}
cout<<tot<<endl;
return ;
}
NOI2001炮兵阵地的更多相关文章
- [洛谷P2704] [NOI2001]炮兵阵地
洛谷题目链接:[NOI2001]炮兵阵地 题目描述 司令部的将军们打算在NM的网格地图上部署他们的炮兵部队.一个NM的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示), ...
- C++ 洛谷 P2704 [NOI2001]炮兵阵地
P2704 [NOI2001]炮兵阵地 没学状压DP的看一下 此题意思很简单,如下图,就是十字架上的不能有两个点放炮兵. 在做此题前,先做一下玉米田 玉米田题解 分析: 而m即一行的个数小于等于10, ...
- P2704 [NOI2001]炮兵阵地 (状压DP)
题目: P2704 [NOI2001]炮兵阵地 解析: 和互不侵犯一样 就是多了一格 用\(f[i][j][k]\)表示第i行,上一行状态为\(j\),上上行状态为\(k\)的最多的可以放的炮兵 发现 ...
- 洛谷P2704 [NOI2001]炮兵阵地 [状压DP]
题目传送门 炮兵阵地 题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图 ...
- [Poj1185][Noi2001]炮兵阵地(状压dp)
炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 29476 Accepted: 11411 Descriptio ...
- P2704 [NOI2001]炮兵阵地
题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...
- [NOI2001]炮兵阵地 【状压DP】
#\(\color{red}{\mathcal{Description}}\) \(Link\) 司令部的将军们打算在\(N \times M\)的网格地图上部署他们的炮兵部队.一个\(N \time ...
- [NOI2001]炮兵阵地 状压DP
题面: 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最多 ...
- Luogu 2704 [NOI2001]炮兵阵地
唔,想到了状压之后就不会了……实在是菜 考虑压两行,设$f_{i, j, k}$表示当前到第$i$行,上一行是$j$状态,前一行是$k$状态的最多能放的炮兵的数量. 发现第一维还可以滚掉,好像可以转移 ...
- 洛谷2704 [NOI2001]炮兵阵地
题目戳这里 Solution 状压DP很好的入门题,用熟练位运算貌似也没那么难. 首先分析一下题目: 看见n=100,m=10,立马就想到了状压,看起来也像DP,所以我们还是采用行号为阶段的状压DP. ...
随机推荐
- ASP.NET Core的身份认证框架IdentityServer4--(1)服务配置
官网文档地址:点我点我 准备 创建一个名为IdentityServer的ASP.NET Core Web Api 项目,端口5000 创建一个名为Api的ASP.NET Core Web Api 项目 ...
- js在函数中未定义的变量的处理
<html> <head> <script type="text/javascript"> var z=1; function abc(){ x ...
- 史上最全的FTP网址
无帐号密码的为匿名登录 ftp://202.114.1.121 ftp://202.114.10.199 ftp://warez:cn.ftp@202.114.12.174 ftp://Music2: ...
- Ajax检测用户名是否已经注册
程序功能 当用户名输入完成(即用户名输入框失去焦点),利用Ajax检测用户名是否已经注册! 实现过程 利用Ajax向CheckUserServlet发送请求,判断该用户名是否可用.这里只是为了演示Aj ...
- AC Dream1069
这题的加密字符 - (Fibnacci % 26),如果得到的字符小于'a',就等于加密字符 - (Fibnacci % 26)+26. 获得题目的函数如下: void getItem(){ char ...
- 借鉴mini2440的usb-wifi工具集在Beagleboard上移植无线网卡
配置minicom: sudo yum install minicom sudo minicom -s 选择Serial port setup,此时所示光标在"Change which se ...
- 笔记︱信用风险模型(申请评分、行为评分)与数据准备(违约期限、WOE转化)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 巴塞尔协议定义了金融风险类型:市场风险.作业风 ...
- DirectShow使用说明
1) 安装directX sdk 2)打开安装目录下的dshow.dsw,进行编译 3)在VC++的Tools/Option/Directory的Include和Library中分别加入 C:/DXS ...
- python3.4 UnicodeDecodeError: 'gbk' codec can't decode byte 0xff in position
python3.4 UnicodeDecodeError: 'gbk' codec can't decode byte 0xff in position 实用python的时候 打开一个csv的文件出 ...
- Java正则表达式语法
Java正则表达式 表达式意义: 1.字符 x 字符 x.例如a表示字符a \\ 反斜线字符.在书写时要写为\\\\.(注意:因为java在第一次解析时,把\\\\解析成正则表达式\\,在 ...