PCA(主成分分析)

PCA是一种无监督降维方式,它将数据投影到一组互相正交的loading vectors(principal axes)之上,并保证投影后的点在新的坐标轴上的方差最大

  1. 记数据集\(X=\begin{bmatrix}\begin{smallmatrix}\vec{x_1}\\\vec{x_2}\\\vdots\\\vec{x_n}\end{smallmatrix}\end{bmatrix}\)为n行p列的矩阵(n个数据,每个数据p维),特征均值为\(\vec{\mu}=(\mu_1, \mu_2, .., \mu_p)\),数据与均值的差异可表示为\(\tilde{X}=\begin{bmatrix}\begin{smallmatrix}\vec{x_1}-\vec{\mu}\\\vec{x_2}-\vec{\mu}\\\vdots\\\vec{x_n}-\vec{\mu}\end{smallmatrix}\end{bmatrix}\)
  2. 假设需求解m个loading vector \(\vec{\phi}_1,\vec{\phi}_2,...,\vec{\phi}_m\),\({m}\leq{min(n-1,p)}\),且需满足\(\vec{\phi}_i^T\vec{\phi}_i=1\)以及\(\vec{\phi}_i^T\vec{\phi}_j=0, i\neq{j}\)
  3. \(X\)在\(\vec{\phi}_1\)上的投影为\(X\vec{\phi}_1\),特征均值的投影为\(\vec{\mu}\cdot\vec{\phi}_1\),则投影后数据与均值的差异可表示为\(\tilde{X}\vec{\phi}_1\),投影后的方差为\(\vec{\phi}_1^T\tilde{X}^T\tilde{X}\vec{\phi}_1\)(省略了系数\(\frac{1}{n}\))

  4. 记\(Q=\tilde{X}^T\tilde{X}\),\(Q\)即为数据集X的协方差矩阵。将\(Q\)进行特征值分解\(Q=V\Lambda{V^T}\),其中\(\Lambda\)为对角矩阵,对角线上的元素为特征值(不失一般性,这里令其按从大到小的顺序排列);\(V=\begin{bmatrix}\begin{smallmatrix}\vec{v_1}&\vec{v_2}&\cdots&\vec{v_p}\end{smallmatrix}\end{bmatrix}\)为正交矩阵,它的列为对应的特征向量

  5. 投影后的方差可以写成\(\vec{\phi}_1^TV\Lambda{V^T}\vec{\phi}_1=\vec{a}_1^T\Lambda\vec{a}_1=\sum_{i=1}^p\lambda_ia_{1i}^2\),因为\(\sum_{i=1}^pa_{1i}^2=\vec{a}_1^T\vec{a}_1=\vec{\phi}_1^TVV^T\vec{\phi}_1=\vec{\phi}_1^T\vec{\phi}_1=1\),所以方差的最大值为\(\lambda_1\),并且仅当\(\vec{\phi}_1=\vec{v}_1\)时取到

  6. \(X\)在\(\vec{\phi}_2\)上投影后的方差可以表示为\(\sum_{i=1}^p\lambda_ia_{2i}^2\)(同上步类似,\(\vec{a}_2=V^T\vec{\phi}_2\) ,\(\sum_{i=1}^pa_{2i}^2=1\)),又因为\(a_{21}=\vec{v}_1^T\vec{\phi}_2=\vec{\phi}_1^T\vec{\phi}_2=0\),所以方差的最大值为\(\lambda_2\),并且仅当\(\vec{\phi}_2=\vec{v}_2\)时取到

  7. 对于\(\vec{\phi}_i, i=3,...,m\)可以按上述步骤依次求得,方差的最大值为\(\lambda_i\),并且仅当\(\vec{\phi}_i=\vec{v}_i\)时取到

  8. 实际应用中首先将数据集\(X\)进行标准化(减去特征均值并除以特征标准差),此时协方差矩阵\(Q=X^TX\),对\(X\)进行SVD分解,\(X=USV\),其中\(U\)为n行n列的正交矩阵,列向量为\(XX^T\)的特征向量;\(V\)为p行p列的正交矩阵,列向量为\(X^TX\)的特征向量(即同将\(Q\)进行特征值分解得到的\(V\));\(S\)为n行p列的矩阵且非对角线上的元素为0,对角线上的元素\(s_{ii}=\sqrt{\lambda_i}\)

LDA(线性判别分析)

LDA是一种有监督降维方式,假设数据集\(X\)共分为\(K\)个类,需保证投影后的点在新的坐标轴上类内离散度尽可能小,同时类间离散度尽可能大

  1. 记\(\vec{\mu}_k\)为第k个类的特征均值,\(\vec{\mu}\)为总体的特征均值,则特征均值的估计值\(\hat{\vec{\mu}}_k=\frac{\sum_{i\in{class}\ {k}}\vec{x}_i}{n_k}\),\(\hat{\vec{\mu}}=\frac{\sum_{i=1}^n\vec{x}_i}{n}\)
  2. 记\(C_k\)为第k个类的协方差矩阵,\(C\)为总体的协方差矩阵,LDA假设\(C_1=C_2=\cdots=C_K=C\),则协方差矩阵的估计值\(\hat{C}=\sum_{k=1}^K\sum_{i\in{class}\ {k}}(\vec{x}_i-\hat{\vec{\mu}}_k)^T(\vec{x}_i-\hat{\vec{\mu}}_k)\)(省略了系数\(\frac{1}{n-K}\))
  3. 假设投影向量为\(\vec{\phi}\),第k类中数据与均值的差异可表示为\(\tilde{X}_k=\begin{bmatrix}\begin{smallmatrix}\vec{x}_{k_1}-\hat{\vec{\mu}}_k\\\vec{x}_{k_2}-\hat{\vec{\mu}}_k\\\vdots\\\vec{x}_{k_{n_k}}-\hat{\vec{\mu}}_k\end{smallmatrix}\end{bmatrix}\),第k类的数据投影后的离散度可表示为\(\vec{\phi}^T\tilde{X}_k^T\tilde{X}_k\vec{\phi}\),\(K\)个类的类内离散度之和为\(\vec{\phi}^T\sum_{k=1}^K\tilde{X}_k^T\tilde{X}_k\vec{\phi}=\vec{\phi}^T\hat{C}\vec{\phi}\)
  4. 由PCA的第三步可以看出投影后数据的总体离散度为\(\vec{\phi}^T\tilde{X}^T\tilde{X}\vec{\phi}\),其中\(\tilde{X}=\begin{bmatrix}\begin{smallmatrix}\vec{x_1}-\hat{\vec{\mu}}\\\vec{x_2}-\hat{\vec{\mu}}\\\vdots\\\vec{x_n}-\hat{\vec{\mu}}\end{smallmatrix}\end{bmatrix}\),则类间离散度可以表示为总体与类内离散度之差,即\(\vec{\phi}^T[\tilde{X}^T\tilde{X}-\hat{C}]\vec{\phi}=\vec{\phi}^T[\sum_{k=1}^Kn_k(\hat{\vec{\mu}}-\hat{\vec{\mu}}_k)^T(\hat{\vec{\mu}}-\hat{\vec{\mu}}_k)]\vec{\phi}=\vec{\phi}^TB\vec{\phi}\)
  5. 为了使类内离散度尽可能小,同时类间离散度尽可能大,先将类内离散度转化为常数,然后只考虑类间离散度。因此首先进行一个空间变换,使得新空间上的协方差矩阵变为单位矩阵,对\(\hat{C}\)进行特征值分解\(\hat{C}=UDU^T\),记\(W=UD^{-1/2}\)为空间变换矩阵,新空间上的数据集变为\(X^*=XW\)。假设在新空间上的投影坐标轴为\(\vec{\phi}^*\),容易看出在新空间上的类内离散度为\(\vec{\phi}^{*T}W^T\hat{C}W\vec{\phi}^*=\vec{\phi}^{*T}W^T\hat{C}W\vec{\phi}^*=\vec{\phi}^{*T}I\vec{\phi}^*=1\)
  6. 新空间上的类间离散度变为\(\vec{\phi}^{*T}W^TBW\vec{\phi}^*\),此时可以参照PCA的做法,在新空间上依次寻找互相正交的坐标轴,使得新空间上的类间离散度最大。对\(W^TBW\)进行特征值分解\(W^TBW=V\Lambda{V^T}\),容易看出\(\vec{\phi}^{*}_i=\vec{v}_i\),\(i=1,2,\cdots,m\),\(m\leq{K-1}\)(证明过程见PCA的5-7步)
  7. 综上所述,最终求得的投影向量\(\vec{\phi}_i=W\vec{\phi}^{*}_i\),\(i=1,2,\cdots,m\)(即对于一个行向量数据\(\vec{x}\),投影后的值为\(\vec{x}\cdot\vec{\phi}_i\):先通过\(\vec{x}W\)进行空间变换,再投影到新的坐标空间下的向量\(\vec{\phi}^{*}_i\)上)
  8. 对于\(\vec{\phi}^{*}_i\),有\(W^TBW\vec{\phi}^{*}_i=\lambda_i\vec{\phi}^{*}_i\),等式两边同时左乘W,有\(WW^TBW\vec{\phi}^{*}_i=\lambda_iW\vec{\phi}^{*}_i\),即\(UD^{-1}U^TB\vec{\phi}_i=\hat{C}^{-1}B\vec{\phi}_i=\lambda_i\vec{\phi}_i\)。因此上述步骤等价于直接求解\(\hat{C}^{-1}B\)的特征值和特征向量(注意此时的特征向量 \(\vec{\phi}\)不是单位向量\(\vec{\phi}^T\vec{\phi}=1\),而是需满足\([W^{-1}\vec{\phi}]^TW^{-1}\vec{\phi}=\vec{\phi}^T\hat{C}\vec{\phi}=1\)),将此时对应的特征值按从大到小排列取前m个特征值和特征向量
  9. 参考文献: The Elements of Statistical Learning(2nd Edition)

PCA与LDA介绍的更多相关文章

  1. 四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps

    四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映 ...

  2. PCA和LDA

    一.PCA     在讲PCA之前,首先有人要问了,为什么我们要使用PCA,PCA到底是干什么的?这里先做一个小小的解释,举个例子:在人脸识别工作中一张人脸图像是60*60=3600维,要处理这样的数 ...

  3. 【转】四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps

    最近在找降维的解决方案中,发现了下面的思路,后面可以按照这思路进行尝试下: 链接:http://www.36dsj.com/archives/26723 引言 机器学习领域中所谓的降维就是指采用某种映 ...

  4. PCA与LDA的区别与联系

    由于涉及内容较多,这里转载别人的博客: http://blog.csdn.net/sunmenggmail/article/details/8071502 其实主要在于:PCA与LDA的变换矩阵不同, ...

  5. 特征选取方法PCA与LDA

    一.主成分分析(PCA)介绍 什么是主成分分析?   主成分分析是一种用于连续属性降维的方法,把多指标转化为少数几个综合指标. 它构造了原始属性的一个正交变换,将一组可能相关的变量转化为一组不相关的变 ...

  6. PCA和LDA降维的比较

    PCA 主成分分析方法,LDA 线性判别分析方法,可以认为是有监督的数据降维.下面的代码分别实现了两种降维方式: print(__doc__) import matplotlib.pyplot as ...

  7. matlab 工具之各种降维方法工具包,下载及使用教程,有PCA, LDA, 等等。。。

    最近跑深度学习,提出的feature是4096维的,放到我们的程序里,跑得很慢,很慢.... 于是,一怒之下,就给他降维处理了,但是matlab 自带的什么pca( ), princomp( )函数, ...

  8. PCA降维参数介绍

    https://www.cnblogs.com/pinard/p/6243025.html#undefined

  9. PCA与LDA

随机推荐

  1. 怎样看Mac的日志

    Mac自带的日志查看工具Console,注意Console和Terminal不是一码事,后者是CLI环境,前者是GUI日志查看工具.在应用里面搜索Console即可找到,里面的界面和Windows的日 ...

  2. dijkstra算法:寻找到全图各点的最短路径

    dijkstra算法介绍:即迪杰斯特拉算法,是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止,是一种广度优先 ...

  3. log4j配置及使用

    一.使用方法: 1.将log4j.properties放到你创建项目的src中 2.引入log4j.jar import org.apache.log4j.*; public class log4jT ...

  4. 图片与base64的互转

    /// <summary>        /// 把图片转换到文本信息        /// </summary>        /// <param name=&quo ...

  5. 深入理解css3中的线性渐变

    css3中的线性渐变 线性渐变公式: background-image: linear-gradient( [ <angle> | <side-or-corner> ]?, & ...

  6. udp客户端收发数据流程

    1.创建客户端socket开始进行通讯.2.这时服务端应该先启动,并在知道服务端的ip以及端口号的时候才能进行通讯.3.本地不需要绑定ip以及端口号,在用此套接字对象发送消息的时候会自动分配活动端口( ...

  7. cropper(裁剪图片)插件使用(案例)

    公司发布微信H5前端阵子刚刚弄好的H5端的图片上传插件,现在有需要裁剪图片.前端找了一个插件---cropper 本人对这插件不怎么熟悉,这个案例最好用在一个页面只有一个上传图片的功能上而且只适合单个 ...

  8. 线程池ThreadPoolExecutor类的使用

    1.使用线程池的好处? 第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗. 第二:提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行. 第三:提高线程的可管理性 ...

  9. springBoot+springSecurity 数据库动态管理用户、角色、权限

    使用spring Security3的四种方法概述 那么在Spring Security3的使用中,有4种方法: 一种是全部利用配置文件,将用户.权限.资源(url)硬编码在xml文件中,已经实现过, ...

  10. PuTTY/终端使用复制、粘贴

    Putty鼠标按钮选项 通过鼠标按钮选项可以控制鼠标来进行复制.粘贴操作,选项包括: 1.Windows选项: 2.混合模式(系统默认选项): 3.Xterm模式. 以上是三种模式选项的简单介绍,下面 ...