Mtcnn进行人脸剪裁和对齐

 from scipy import misc
import tensorflow as tf
import detect_face
import cv2
# import matplotlib.pyplot as plt
from PIL import Image
import os
# import scipy.misc
# %pylab inline
fin = 'D:\data\male'
fout = 'D:\data\\rain\male'
minsize = 20 # minimum size of face
threshold = [0.6, 0.7, 0.7] # three steps's threshold
factor = 0.709 # scale factor
margin = 44
frame_interval = 3
batch_size = 1000
image_size = 182
input_image_size = 160 print('Creating networks and loading parameters') with tf.Graph().as_default():
gpu_options = tf.GPUOptions(allow_growth=True)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = detect_face.create_mtcnn(sess, 'D:\\code\\real-time-deep-face-recognition-master\\20170512-110547') i= 0 for file in os.listdir(fin):
try: file_fullname = fin + '/' + file
img = misc.imread(file_fullname)
# i+= 1
# img = misc.imread(image_path)
bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
nrof_faces = bounding_boxes.shape[0] # 人脸数目
print(nrof_faces)
#print('找到人脸数目为:{}'.format(nrof_faces)) # print(bounding_boxes) crop_faces = []
if nrof_faces != 0 :
for face_position in bounding_boxes:
face_position = face_position.astype(int)
print(face_position[0:4])
cv2.rectangle(img, (face_position[0], face_position[1]), (face_position[2], face_position[3]), (0, 255, 0), 2)
crop = img[face_position[1]:face_position[3],
face_position[0]:face_position[2], ]
# print(crop)
# crop = cv2.resize(crop, (96, 96), interpolation=cv2.INTER_CUBIC)
crop_faces.append(crop)
img2 = Image.open(file_fullname)
a = face_position[0:4]
# print('crop_faces:',crop_faces)
# a = [face_position[0:4]]
box = (a)
roi = img2.crop(box)
i = roi.resize((224, 224)) out_path = fout + '/' + file i.save(out_path)
print('success')
else:
pass
except:
pass

Mtcnn进行人脸剪裁和对齐B的更多相关文章

  1. Mtcnn进行人脸剪裁和对齐

    from scipy import misc import tensorflow as tf import detect_face import cv2 import matplotlib.pyplo ...

  2. 第三十七节、人脸检测MTCNN和人脸识别Facenet(附源码)

    在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐 ...

  3. MTCNN 实现人脸识别

    MTCNN(Multi-task CNN) MTCNN难点 WIDER FACE等数据集为我们提供的图片并不是MTCNN支持的训练样本, 需要通过几个脚本将其转为MTCNN可以接受的数据集, 这些脚本 ...

  4. facenet 人脸识别(二)——创建人脸库搭建人脸识别系统

    搭建人脸库 选择的方式是从百度下载明星照片 照片下载,downloadImageByBaidu.py # coding=utf-8 """ 爬取百度图片的高清原图 &qu ...

  5. 算法---FaceNet理论学习篇

    FaceNet算法-理论学习篇 @WP20190228 ==============目 录============ 一.LFW数据集简介 二.FaceNet算法简介 FaceNet算法=MTCNN模型 ...

  6. FaceNet pre-trained模型以及FaceNet源码使用方法和讲解

    Pre-trained models Model name LFW accuracy Training dataset Architecture 20180408-102900 0.9905 CASI ...

  7. 使用TensorRT对人脸检测网络MTCNN进行加速

    前言 最近在做人脸比对的工作,需要用到人脸关键点检测的算法,比较成熟和通用的一种算法是 MTCNN,可以同时进行人脸框选和关键点检测,对于每张脸输出 5 个关键点,可以用来进行人脸对齐. 问题 刚开始 ...

  8. 机器学习--详解人脸对齐算法SDM-LBF

    引自:http://blog.csdn.net/taily_duan/article/details/54584040 人脸对齐之SDM(Supervised Descent Method) 人脸对齐 ...

  9. 机器学习----人脸对齐的算法-ASM.AAM..CLM.SDM

    引自:http://blog.csdn.net/linolzhang/article/details/55271815 人脸检测 早已比较成熟,传统的基于HOG+线性分类器 的方案检测效果已经相当不错 ...

随机推荐

  1. 没人看系列-----html随笔

    <!DOCTYPE> 目录 没人看系列-----html/css详解 前言 不多说这段时间写了好多好多前端的东西,以至于自己重新返回看了一遍前端的所有技术.故此做个总结,准备学东西的请绕行 ...

  2. python函数与装饰器

    一.名字空间与作用域 1.名字空间 名字空间:赋值语句创建了约束,用来存储约束的dict被称为名字空间      赋值语句的行为:1.分别在堆和栈中创建obj与name                 ...

  3. STL容器的基本特性和特征

    1. STL有6种序列容器类型(1)vector它提供对元素的随即访问,在尾部添加和删除元素的时间是固定的,在头部或中部插入和删除元素的复杂度为线性时间.(2)deque在文件中声明.是双端队列,支持 ...

  4. Angular HttpClient upload file with FormData

    从sof上找到一个example:https://stackoverflow.com/questions/46206643/asp-net-core-2-0-and-angular-4-3-file- ...

  5. 保证你能看懂的KMP字符串匹配算法

    文章转载自一位大牛: 阮一峰原网址http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm ...

  6. java基础- Collection和map

    使用构造方法时,需要保留一个无参的构造方法 静态方法可以直接通过类名来访问,而不用创建对象. -- Java代码的执行顺序: 静态变量初始化→静态代码块→初始化静态方法→初始化实例变量→代码块→构造方 ...

  7. 3、js无缝滚动轮播

    另一个无缝滚动轮播,带暂停,由于js是异步,用C面向过程的思想开始会很怪异很怪异,因为当你定时器里面需要执行的函数时间比较长或是有一段延时时,异步的代码会完全不同,但习惯就好了. 这个代码有几个问题, ...

  8. Docker 多主机网络总结(非常全)

    PS:文章首发公众号,欢迎大家关注我的公众号:aCloudDeveloper,专注技术分享,努力打造干货分享平台,二维码在文末可以扫,谢谢大家. 上篇文章介绍了容器网络的单主机网络,本文将进一步介绍多 ...

  9. 16个必须熟悉的linux服务器监控命令

    本原创文章属于<Linux大棚>博客. 博客地址为http://roclinux.cn. 文章作者为roc. == 原文:16 Linux Server Monitoring Comman ...

  10. 安装mysql5.5.28的步骤 2017.6.27

    http://blog.sina.com.cn/s/blog_7cd69a6501014x7h.html