import matplotlib.pyplot as plt
input_values = [1,2,3,4,5] #输入值
squares = [1,4,9,16,25] #输出值
plt.plot(input_values,squares,linewidth = 5) #如果没有输入值 则从0开始
# 设置图标标题,并给坐标轴加上标签
plt.title("Square Numbers",fontsize = 24)
plt.xlabel('Value',fontsize = 14)
plt.ylabel("Square of Value",fontsize = 14) #设置可读标记的大小
plt.tick_params(axis = 'both',labelsize = 14) #xy轴都要就用both 标签大小
plt.show()

 import matplotlib.pyplot as plt
x_values = [1,2,3,4,5]
y_values = [1,4,9,16,25]
plt.scatter(x_values,y_values,s=100) #点的尺寸
#设置标题加标签
plt.title('Square Numbers',fontsize = 24)
plt.xlabel('Value ' ,fontsize = 14)
plt.ylabel('Square of Value',fontsize = 14) #设置可读标记的大小
plt.tick_params(axis = 'both',which = 'major',labelsize = 14)
plt.show()

import matplotlib.pyplot as plt
x_values = list(range(1,1001)) #列表 1~1000
y_values = [x**2 for x in x_values]
plt.scatter(x_values,y_values,c='red',edgecolor = 'none',s=40) #颜色 轮廓颜色 点的尺寸 也可以(0,0,0.8) 这里取0~1代表红绿蓝分量 越大越深
#设置标题加标签
plt.title('Square Numbers',fontsize = 24)
plt.xlabel('Value ' ,fontsize = 14)
plt.ylabel('Square of Value',fontsize = 14) #设置可读标记的大小
plt.tick_params(axis = 'both',which = 'major',labelsize = 14) #设置每个坐标轴的取值范围
plt.axis([0,1100,0,1100000]) #x 0~1100 y 0~1100000
plt.show()

import matplotlib.pyplot as plt
x_values = list(range(1001)) #列表 1~1000
y_values = [x**2 for x in x_values]
plt.scatter(x_values,y_values,c=y_values,cmap = plt.cm.Blues,edgecolor = 'none',s=40) #颜色设置成一个y值的列表 然后y小则浅蓝 大则深蓝 轮廓颜色 点的尺寸
#设置标题加标签
plt.title('Square Numbers',fontsize = 24)
plt.xlabel('Value ' ,fontsize = 14)
plt.ylabel('Square of Value',fontsize = 14) #设置可读标记的大小
plt.tick_params(axis = 'both',which = 'major',labelsize = 14) #设置每个坐标轴的取值范围
plt.axis([0,1100,0,1100000]) #x 0~1100 y 0~1100000
plt.show()

plk.savefig('squares_plot.png',bbox_inches = 'tight')  可以直接保存 第一个为文件名 第二个为裁去多余部分


from random import choice

class RandomWalk():
'''一个生成随机漫步数据的类''' def __init__(self,num_points = 5000):
'''初始化随机漫步的属性'''
self.num_points = num_points #所有随机漫步都始于(0,0)
self.x_values = [0]
self.y_values = [0] def fill_walk(self):
'''计算随机漫步包含的所有点''' #不断漫步,知道列表达到指定的长度
while len(self.x_values)<self.num_points: #决定前进方向以级演这个方向前进的举例
x_direction = choice ([1,-1])
x_distance = choice([0,1,2,3,4])
x_step = x_direction * x_distance y_direction = choice ([1,-1])
y_distance = choice ([0,1,2,3,4])
y_step = y_direction * y_distance #拒绝原地踏步
if x_step == 0 and y_step == 0:
continue #计算下一个点的x和y值
next_x = self.x_values[-1] + x_step #-1是最后一个
next_y = self.y_values[-1] + y_step self.x_values.append(next_x)
self.y_values.append(next_y)
import matplotlib.pyplot as plt

from random_walk import RandomWalk

#创建一个randomwalk实例 并绘制所有点

while True:
  rw = RandomWalk()
  rw.fill_walk()
  plt.scatter(rw.x_values,rw.y_values,s=15)
  plt.show()
  keep_running=input('Make another walk?(y/n): ')
  if keep_running == 'n':
    break

import matplotlib.pyplot as plt

from random_walk import RandomWalk

#创建一个randomwalk实例 并绘制所有点
while True:
rw = RandomWalk(200000) #增加点数
rw.fill_walk()
#设置绘图窗口的尺寸
plt.figure(dpi=128,figsize = (10,6)) #分辨率
point_numbers = list(range(rw.num_points)) #设置了每个漫步点的编号来作为颜色
plt.scatter(rw.x_values,rw.y_values,s=1,c=point_numbers, #参数c位编号列表
cmap = plt.cm.Blues,edgecolor = 'none') #蓝色映射
plt.scatter(0,0,c='green',edgecolors = 'none',s=100) #起点
plt.scatter(rw.x_values[-1],rw.y_values[-1],c='red',edgecolors = 'none',
s=100) #终点
plt.axes().get_xaxis().set_visible(False) #影藏坐标轴
plt.axes().get_yaxis().set_visible(False)
plt.show()
keep_running=input('Make another walk?(y/n): ')
if keep_running == 'n':
break

python数据可视化学习1的更多相关文章

  1. Python数据可视化编程实战pdf

    Python数据可视化编程实战(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1vAvKwCry4P4QeofW-RqZ_A 提取码:9pcd 复制这段内容后打开百度 ...

  2. Python数据可视化的四种简易方法

    摘要: 本文讲述了热图.二维密度图.蜘蛛图.树形图这四种Python数据可视化方法. 数据可视化是任何数据科学或机器学习项目的一个重要组成部分.人们常常会从探索数据分析(EDA)开始,来深入了解数据, ...

  3. python 数据可视化

    一.基本用法 import numpy as np import matplotlib.pyplot as plt x = np.linspace(-1,1,50) # 生成-1到1 ,平分50个点 ...

  4. Python数据可视化基础讲解

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:爱数据学习社 首先,要知道我们用哪些库来画图? matplotlib ...

  5. 《数据可视化之美》高清PDF全彩版|百度网盘免费下载|Python数据可视化

    <数据可视化之美>高清PDF全彩版|百度网盘免费下载|Python数据可视化 提取码:i0il 内容简介 <数据可视化之美>内容简介:可视化是数据描述的图形表示,旨在一目了然地 ...

  6. python数据可视化编程实战PDF高清电子书

    点击获取提取码:3l5m 内容简介 <Python数据可视化编程实战>是一本使用Python实现数据可视化编程的实战指南,介绍了如何使用Python最流行的库,通过60余种方法创建美观的数 ...

  7. python数据可视化-matplotlib入门(7)-从网络加载数据及数据可视化的小总结

    除了从文件加载数据,另一个数据源是互联网,互联网每天产生各种不同的数据,可以用各种各样的方式从互联网加载数据. 一.了解 Web API Web 应用编程接口(API)自动请求网站的特定信息,再对这些 ...

  8. Python数据可视化编程实战——导入数据

    1.从csv文件导入数据 原理:with语句打开文件并绑定到对象f.不必担心在操作完资源后去关闭数据文件,with的上下文管理器会帮助处理.然后,csv.reader()方法返回reader对象,通过 ...

  9. Python数据可视化——使用Matplotlib创建散点图

    Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...

随机推荐

  1. HBuilder连接IOS手机打开APP测试

    HBuilder是专为前端打造的开发工具,具有最全的语法库和浏览器兼容数据,以方便制作手机APP,最保护眼睛的绿柔设计等优点在近几年盛行: 开发移动端APP项目想要在手机真机上测试: 首先打开HBui ...

  2. 【高并发简单解决方案】redis队列缓存 + mysql 批量入库 + php离线整合

    需求背景:有个调用统计日志存储和统计需求,要求存储到mysql中:存储数据高峰能达到日均千万,瓶颈在于直接入库并发太高,可能会把mysql干垮. 问题分析 思考:应用网站架构的衍化过程中,应用最新的框 ...

  3. 完美解决打开github速度慢的问题

    摘抄自知乎. 修改hosts(HOSTS文件路径:C:\Windows\System32\drivers\etc\hosts) 1.打开Dns检测|Dns查询 - 站长工具 2.在检测输入栏中输入ht ...

  4. 日历插件——laydate.js

    laydate是一款很好用的日历控件,兼容了包括IE6在内的所有主流浏览器,默认有三种皮肤,如需其它皮肤可去官网下载http://www.layui.com/laydate/  一.核心方法:layd ...

  5. openvpn服务端与客户端网段互通

    http://www.softown.cn/post/140.html OpenVPN安装.配置教程 http://www.softown.cn/post/137.html openvpn的serve ...

  6. Sql Server的艺术(二) SQL复杂条件搜索

    本次讲到where字句中经常用到的集中较为复杂的搜索条件,包括组合的查询条件.IN运算符.NOT运算符.LIKE运算符和相关通配符. 学习本节需要用到一下两张表: CREATE TABLE TEACH ...

  7. Redis和Memcached区别

    本文参考 Redis与Memcached的区别. 如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点: Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set, ...

  8. linux ss 命令

    ss 是 Socket Statistics 的缩写.ss 命令可以用来获取 socket 统计信息,它显示的内容和 netstat 类似.但 ss 的优势在于它能够显示更多更详细的有关 TCP 和连 ...

  9. php操作mongodb的常用函数

    连接mongodb: $mongoObj = new Mongo("127.0.0.1" , array( 'connect'=>true, 'persist'=>tr ...

  10. ubuntu+mono+PetaPoco+Oracle+.net 程序部署

    前言:将windows 下开发的 .net 控制台程序(连接Oracle数据库)部署到 ubuntu 下步骤记录  2017-09-19 实验所用机器为虚拟机Ubuntu16.04  amd64 安装 ...