转:

分布式锁与实现(一)——基于Redis实现

概述

目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。

在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。

选用Redis实现分布式锁原因

  • Redis有很高的性能
  • Redis命令对此支持较好,实现起来比较方便

在此就不介绍Redis的安装了,具体在Linux和Windows中的安装可以查看我前面的博客。
http://www.cnblogs.com/liuyang0/p/6504826.html

使用命令介绍

SETNX

SETNX key val
当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。

expire

expire key timeout
为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。

delete

delete key
删除key

在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。

实现

使用的是jedis来连接Redis。

实现思想

  • 获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。
  • 获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
  • 释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。

分布式锁的核心代码如下:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Transaction;
import redis.clients.jedis.exceptions.JedisException; import java.util.List;
import java.util.UUID; /**
* Created by liuyang on 2017/4/20.
*/
public class DistributedLock {
private final JedisPool jedisPool; public DistributedLock(JedisPool jedisPool) {
this.jedisPool = jedisPool;
} /**
* 加锁
* @param locaName 锁的key
* @param acquireTimeout 获取超时时间
* @param timeout 锁的超时时间
* @return 锁标识
*/
public String lockWithTimeout(String locaName,
long acquireTimeout, long timeout) {
Jedis conn = null;
String retIdentifier = null;
try {
// 获取连接
conn = jedisPool.getResource();
// 随机生成一个value
String identifier = UUID.randomUUID().toString();
// 锁名,即key值
String lockKey = "lock:" + locaName;
// 超时时间,上锁后超过此时间则自动释放锁
int lockExpire = (int)(timeout / 1000); // 获取锁的超时时间,超过这个时间则放弃获取锁
long end = System.currentTimeMillis() + acquireTimeout;
while (System.currentTimeMillis() < end) {
if (conn.setnx(lockKey, identifier) == 1) {
conn.expire(lockKey, lockExpire);
// 返回value值,用于释放锁时间确认
retIdentifier = identifier;
return retIdentifier;
}
// 返回-1代表key没有设置超时时间,为key设置一个超时时间
if (conn.ttl(lockKey) == -1) {
conn.expire(lockKey, lockExpire);
} try {
Thread.sleep(10);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
} catch (JedisException e) {
e.printStackTrace();
} finally {
if (conn != null) {
conn.close();
}
}
return retIdentifier;
} /**
* 释放锁
* @param lockName 锁的key
* @param identifier 释放锁的标识
* @return
*/
public boolean releaseLock(String lockName, String identifier) {
Jedis conn = null;
String lockKey = "lock:" + lockName;
boolean retFlag = false;
try {
conn = jedisPool.getResource();
while (true) {
// 监视lock,准备开始事务
conn.watch(lockKey);
// 通过前面返回的value值判断是不是该锁,若是该锁,则删除,释放锁
if (identifier.equals(conn.get(lockKey))) {
Transaction transaction = conn.multi();
transaction.del(lockKey);
List<Object> results = transaction.exec();
if (results == null) {
continue;
}
retFlag = true;
}
conn.unwatch();
break;
}
} catch (JedisException e) {
e.printStackTrace();
} finally {
if (conn != null) {
conn.close();
}
}
return retFlag;
}
}

测试

下面就用一个简单的例子测试刚才实现的分布式锁。
例子中使用50个线程模拟秒杀一个商品,使用--运算符来实现商品减少,从结果有序性就可以看出是否为加锁状态。

模拟秒杀服务,在其中配置了jedis线程池,在初始化的时候传给分布式锁,供其使用。

import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig; /**
* Created by liuyang on 2017/4/20.
*/
public class Service {
private static JedisPool pool = null; static {
JedisPoolConfig config = new JedisPoolConfig();
// 设置最大连接数
config.setMaxTotal(200);
// 设置最大空闲数
config.setMaxIdle(8);
// 设置最大等待时间
config.setMaxWaitMillis(1000 * 100);
// 在borrow一个jedis实例时,是否需要验证,若为true,则所有jedis实例均是可用的
config.setTestOnBorrow(true);
pool = new JedisPool(config, "127.0.0.1", 6379, 3000);
} DistributedLock lock = new DistributedLock(pool); int n = 500; public void seckill() {
// 返回锁的value值,供释放锁时候进行判断
String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
System.out.println(Thread.currentThread().getName() + "获得了锁");
System.out.println(--n);
lock.releaseLock("resource", indentifier);
}
}

// 模拟线程进行秒杀服务

public class ThreadA extends Thread {
private Service service; public ThreadA(Service service) {
this.service = service;
} @Override
public void run() {
service.seckill();
}
} public class Test {
public static void main(String[] args) {
Service service = new Service();
for (int i = 0; i < 50; i++) {
ThreadA threadA = new ThreadA(service);
threadA.start();
}
}
}

结果如下,结果为有序的。

若注释掉使用锁的部分

public void seckill() {
// 返回锁的value值,供释放锁时候进行判断
//String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
System.out.println(Thread.currentThread().getName() + "获得了锁");
System.out.println(--n);
//lock.releaseLock("resource", indentifier);
}

从结果可以看出,有一些是异步进行的。

在分布式环境中,对资源进行上锁有时候是很重要的,比如抢购某一资源,这时候使用分布式锁就可以很好地控制资源。
当然,在具体使用中,还需要考虑很多因素,比如超时时间的选取,获取锁时间的选取对并发量都有很大的影响,上述实现的分布式锁也只是一种简单的实现,主要是一种思想。

下一次我会使用zookeeper实现分布式锁,使用zookeeper的可靠性是要大于使用redis实现的分布式锁的,但是相比而言,redis的性能更好。

上面的代码可以在我的GitHub中进行查看,地址如下:
https://github.com/yangliu0/DistributedLock

分类: 分布式

分布式锁与实现(一)——基于Redis实现 【比较靠谱】的更多相关文章

  1. 分布式锁与实现(一)——基于Redis实现

    概述 目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CAP理论告诉我们"任何一个分布式系统都无法同时满足一致性(Consisten ...

  2. 分布式锁与实现(一)基于Redis实现

    目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency).可用性( ...

  3. 分布式锁与实现(一)——基于Redis实现(转载)

    php的完整流程,包护队列操作:http://www.cnblogs.com/candychen/p/5736128.html 概述 目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致 ...

  4. 分布式锁实践(一)-Redis编程实现总结

    写在最前面 我在之前总结幂等性的时候,写过一种分布式锁的实现,可惜当时没有真正应用过,着实的心虚啊.正好这段时间对这部分实践了一下,也算是对之前填坑了. 分布式锁按照网上的结论,大致分为三种:1.数据 ...

  5. 基于 redis 的分布式锁实现 Distributed locks with Redis debug 排查错误

    小结: 1. 锁的实现方式,按照应用的实现架构,可能会有以下几种类型: 如果处理程序是单进程多线程的,在 python下,就可以使用 threading 模块的 Lock 对象来限制对共享变量的同步访 ...

  6. redis咋么实现分布式锁,redis分布式锁的实现方式,redis做分布式锁 积极正义的少年

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...

  7. 分布式锁的实现【基于ZooKeeper】

    引言 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提供一致性服务的软件,提 ...

  8. Redisson 分布式锁实现之前置篇 → Redis 的发布/订阅 与 Lua

    开心一刻 我找了个女朋友,挺丑的那一种,她也知道自己丑,平常都不好意思和我一块出门 昨晚,我带她逛超市,听到有两个人在我们背后小声嘀咕:"看咱前面,想不到这么丑都有人要." 女朋友 ...

  9. 万能分布式消费框架,添加基于redis中间件的方式。

    框架目的是分布式调度起一切任何函数(当然也包括调度起一切任何方法). 之前写的是基于rabbitmq的,作为专用的消息队列好处比redis的list结构好很多.但有的人还是强烈喜欢用redis,以及r ...

随机推荐

  1. 网页三剑客:HTML+CSS+JavaScript 之JavaScript

    JavaScript 简介 JavaScript 是互联网上最流行的脚本语言,这门语言可用于 HTML 和 web,更可广泛用于服务器.PC.笔记本电脑.平板电脑和智能手机等设备. JavaScrip ...

  2. 学习day02

    day021.结构标记 ***** 做布局 1.<header>元素 <header></header> ==> <div id="heade ...

  3. Django 提交 form 表单

    创建 Django 的过程可以参考上一篇文章 https://www.cnblogs.com/klvchen/p/10601536.html 在 templates 文件夹下创建一个 index.ht ...

  4. 【代码笔记】Web-CSS-CSS Align

    一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...

  5. Android深入理解Context(一)Context关联类和Application Context创建过程

    前言 Context也就是上下文对象,是Android较为常用的类,但是对于Context,很多人都停留在会用的阶段,这个系列会带大家从源码角度来分析Context,从而更加深入的理解它. 1.Con ...

  6. Scrum笔记

    Scrum的笔记,需要的童鞋拿去,有错漏处请指正,谢谢. 出处:https://www.cnblogs.com/Ryu666/p/9890609.html

  7. uboot的启动过程-FDT

    uboot的启动过程,省略了汇编部分之后,第一个执行函数是board_init_f(),在uboot/common目录的board_f.c中   board_init_f函数,首先初始化了全局数据 # ...

  8. AI-2048 注释

    针对2048游戏,有人实现了一个AI程序,可以以较大概率(高于90%)赢得游戏,并且作者在 stackoverflow上简要介绍了AI的算法框架和实现思路. 有博客介绍了其中涉及的算法,讲的很好 其中 ...

  9. Linux使用IDEA配置maven的web项目骨架archetype(模板) 自定义骨架

    说明:本文说的骨架就是 archetype,也可以理解为模板,总是就是指你创建项目时的基本配置. 前言:在使用IDEA创建maven的web项目时,一般都是直接使用提供的默认web项目,如图 然而创建 ...

  10. 遍历一个List的几种方法

    方式1.一开始是这样的: public static void test1(List<String> list) { for (int i = 0; i < list.size(); ...