理解滑动平均(exponential moving average)
1. 用滑动平均估计局部均值
滑动平均(exponential moving average),或者叫做指数加权平均(exponentially weighted moving average),可以用来估计变量的局部均值,使得变量的更新与一段时间内的历史取值有关。
变量$v$在$t$时刻记为$v_t$,$\theta_t$为变量$v$在$t$时刻的取值,即在不使用滑动平均模型时$v_t = \theta_t$,在使用滑动平均模型后,$v_t$的更新公式如下:
\begin{equation} v_t = \beta*v_{t-1} + (1 - \beta) * \theta_t \end{equation}
上式中,$\beta \in [0,1)$。$\beta = 0$ 相当于没有使用滑动平均。
假设起始$v_0= 0$,$\beta = 0.9$,之后每个时刻,依次对变量$v$进行赋值,不使用滑动平均和使用滑动平均结果如下:
表 1
t |
不使用滑动平均模型,即给$v$直接赋值$\theta$ |
使用滑动平均模型,按照公式(1)更新$v$ |
使用滑动平均模型,按照公式(2)更新$v$ |
0 | 0 | / | / |
1 | 10 | 1 | 10 |
2 | 20 | 2.9 | 13.6842 |
3 | 10 | 3.61 | 13.3210 |
4 | 0 | 3.249 | 9.4475 |
5 | 10 | 3.9241 | 9.5824 |
6 | 20 | 5.53169 | 11.8057 |
7 | 30 | 7.978521 | 15.2932 |
8 | 5 | 7.6806689 | 13.4859 |
9 | 0 | 6.91260201 | 11.2844 |
图 1:三种变量更新方式
Andrew Ng在Course 2 Improving Deep Neural Networks中讲到,$t$时刻变量$v$的滑动平均值大致等于过去$1/(1 - \beta)$个时刻$\theta$值的平均。这个结论在滑动平均起始时相差比较大,所以有了Bias correction,将$v_t$除以$(1 - \beta^t)$修正对均值的估计。
加入了Bias correction后,$v_t$更新公式如下:
\begin{equation} v_t = \frac{\beta*v_{t-1} + (1 - \beta) * \theta_t}{1 - \beta^t} \end{equation}
$t$越大,$1-\beta^t$越接近1,则公式(1)和(2)得到的结果将越来越近。
当$\beta$越大时,滑动平均得到的值越和$\theta$的历史值相关。如果$\beta = 0.9$,则大致等于过去10个$\theta$值的平均;如果$\beta = 0.99$,则大致等于过去100个$\theta$值的平均。
滑动平均的好处:
占内存少,不需要保存过去10个或者100个历史$\theta$值,就能够估计其均值。(当然,滑动平均不如将历史值全保存下来计算均值准确,但后者占用更多内存和计算成本更高)
2. TensorFlow中使用滑动平均来更新变量(参数)
滑动平均可以看作是变量的过去一段时间取值的均值,相比对变量直接赋值而言,滑动平均得到的值在图像上更加平缓光滑,抖动性更小,不会因为某次的异常取值而使得滑动平均值波动很大,如图 1所示。
TensorFlow 提供了 tf.train.ExponentialMovingAverage 来实现滑动平均。在初始化 ExponentialMovingAverage 时,需要提供一个衰减率(decay),即公式(1)(2)中的$\beta$。这个衰减率将用于控制模型的更新速度。ExponentialMovingAverage 对每一个变量(variable)会维护一个影子变量(shadow_variable),这个影子变量的初始值就是相应变量的初始值,而每次运行变量更新时,影子变量的值会更新为:
\begin{equation} \mbox{shadow_variable} = \mbox{decay} * \mbox{shadow_variable} + (1 - \mbox{decay}) * \mbox{variable} \end{equation}
公式(3)中的 shadow_variable 就是公式(1)中的$v_t$,公式(3)中的 variable 就是公式(1)中的$\theta_t$,公式(3)中的 decay 就是公式(1)中的$\beta$。
公式(3)中,decay 决定了影子变量的更新速度,decay 越大影子变量越趋于稳定。在实际运用中,decay一般会设成非常接近1的数(比如0.999或0.9999)。为了使得影子变量在训练前期可以更新更快,ExponentialMovingAverage 还提供了 num_updates 参数动态设置 decay 的大小。如果在初始化 ExponentialMovingAverage 时提供了 num_updates 参数,那么每次使用的衰减率将是:
\begin{equation} min\{\mbox{decay}, \frac{1 + \mbox{num_updates}}{10 + \mbox{num_updates}}\} \end{equation}
这一点其实和Bias correction很像。
TensorFlow 中使用 ExponentialMovingAverage 的例子:code
3. 滑动平均为什么在测试过程中被使用?
滑动平均可以使模型在测试数据上更健壮(robust)。“采用随机梯度下降算法训练神经网络时,使用滑动平均在很多应用中都可以在一定程度上提高最终模型在测试数据上的表现。”
对神经网络边的权重 weights 使用滑动平均,得到对应的影子变量 shadow_weights。在训练过程仍然使用原来不带滑动平均的权重 weights,不然无法得到 weights 下一步更新的值,又怎么求下一步 weights 的影子变量 shadow_weights。之后在测试过程中使用 shadow_weights 来代替 weights 作为神经网络边的权重,这样在测试数据上效果更好。因为 shadow_weights 的更新更加平滑,对于随机梯度下降而言,更平滑的更新说明不会偏离最优点很远;对于梯度下降 batch gradient decent,我感觉影子变量作用不大,因为梯度下降的方向已经是最优的了,loss 一定减小;对于 mini-batch gradient decent,可以尝试滑动平均,毕竟 mini-batch gradient decent 对参数的更新也存在抖动。
设$\mbox{decay} = 0.999$,一个更直观的理解,在最后的1000次训练过程中,模型早已经训练完成,正处于抖动阶段,而滑动平均相当于将最后的1000次抖动进行了平均,这样得到的权重会更加robust。
References
Course 2 Improving Deep Neural Networks by Andrew Ng
《TensorFlow实战Google深度学习框架》 4.4.3
理解滑动平均(exponential moving average)的更多相关文章
- (转)理解滑动平均(exponential moving average)
转自:理解滑动平均(exponential moving average) 1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exp ...
- EMA计算的C#实现(c# Exponential Moving Average (EMA) indicator )
原来国外有个源码(TechnicalAnalysisEngine src 1.25)内部对EMA的计算是: var copyInputValues = input.ToList(); for (int ...
- (转)滑动平均法、滑动平均模型算法(Moving average,MA)
原文链接:https://blog.csdn.net/qq_39521554/article/details/79028012 什么是移动平均法? 移动平均法是用一组最近的实际数据值来预测未来一期或几 ...
- 一文详解滑动平均法、滑动平均模型法(Moving average,MA)
任何关于算法.编程.AI行业知识或博客内容的问题,可以随时扫码关注公众号「图灵的猫」,加入”学习小组“,沙雕博主在线答疑~此外,公众号内还有更多AI.算法.编程和大数据知识分享,以及免费的SSR节点和 ...
- [leetcode]346. Moving Average from Data Stream滑动窗口平均值
Given a stream of integers and a window size, calculate the moving average of all integers in the sl ...
- Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析
觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...
- 『TensorFlow』滑动平均
滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...
- tensorflow入门笔记(二) 滑动平均模型
tensorflow提供的tf.train.ExponentialMovingAverage 类利用指数衰减维持变量的滑动平均. 当训练模型的时候,保持训练参数的滑动平均是非常有益的.评估时使用取平均 ...
- deep_learning_Function_tf.train.ExponentialMovingAverage()滑动平均
近来看batch normalization的代码时,遇到tf.train.ExponentialMovingAverage()函数,特此记录. tf.train.ExponentialMovingA ...
随机推荐
- 详解MUI顶部选项卡(tab-top-webview-main)的用法
最近用MUI做手机app的时候,遇到了一点问题.然后就对这个tab-top-webview-main的源码做了点研究,接下来我将和大家详解一下 tab-top-webview-main的用法和应该注意 ...
- Jquery样式
css样式只有一个的时候: $(function(){ $('p').css('background-color','green'); }) css样式有多个的时候: $(function(){ $( ...
- selenium webdriver——设置元素等待
如今大多数Web应用程序使用ajax技术,当浏览器在加载页面时,页面上的元素可能并不是同时被加载完成,这给定位元素的定位增加了困难, 如果因为在加载某个元素时延迟而造成ElementNotVisibl ...
- Java 读书笔记 (二) 对象和类
Java 作为一种面向对象语言,支持以下基本概念: 多态 继承 封闭 抽象 类 对象 实例 方法 重载 对象: 是类的一个实例,有状态和行为.以人为例,黄种人.白种人.黑种人为类,每一个具体的人为类的 ...
- client.go
package)*time.Second) ], { hasConn := false waitc := time.After(cfg.DialTimeout) ...
- 向combobox控件中添加元素
函数定义: bool FillComboBox(CComboBox* pc, CStringList& slValues, bool bOnlyUniqueValues = false); 函 ...
- [SCOI2005]栅栏 二分+dfs
这个题真的是太nb了,各种骚 二分答案,肯定要减最小的mid个,从大往小搜每一个木板,从大往小枚举所用的木材 当当前木材比最短的木板还短,就扔到垃圾堆里,并记录waste,当 waste+sum> ...
- poj 3243 扩展BSGS
每次把gcd(a,c)提到前面,直到a,c互质,然后就是普通BSGS了 #include<cstdio> #include<cstring> #include<iostr ...
- B20J_2836_魔法树_树链剖分+线段树
B20J_2836_魔法树_树链剖分+线段树 题意: 果树共有N个节点,其中节点0是根节点,每个节点u的父亲记为fa[u].初始时,这个果树的每个节点上都没有果子(即0个果子). Add u v d ...
- Java并发编程阅读笔记-Java监视器模式示例
1.前言 书中在解释Java监视器模式的时候使用了一个车辆追踪器例子,根据不同的使用场景给出了不同的实现和优化. 2.监视器模式示例 实现一个调度车辆的"车辆追踪器",每台车使用一 ...