利用TFRecords存储与读取带标签的图片

觉得有用的话,欢迎一起讨论相互学习~



TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件

TFRecords文件包含了tf.train.Example 协议内存块(protocol buffer)(协议内存块包含了字段 Features)。我们可以写一段代码获取你的数据, 将数据填入到Example协议内存块(protocol buffer),将协议内存块序列化为一个字符串, 并且通过tf.python_io.TFRecordWriter 写入到TFRecords文件。

从TFRecords文件中读取数据, 可以使用tf.TFRecordReader的tf.parse_single_example解析器。这个操作可以将Example协议内存块(protocol buffer)解析为张量。

我们使用tf.train.Example来定义我们要填入的数据格式,然后使用tf.python_io.TFRecordWriter来写入。

基本的,一个Example中包含Features,Features里包含Feature(这里没s)的字典。最后,Feature里包含有一个 FloatList, 或者ByteList,或者Int64List

示例代码

# Reuse the image from earlier and give it a fake label
# 复用之前的图像,并赋予一个假标签
import tensorflow as tf image_filename = "./images/chapter-05-object-recognition-and-classification/working-with-images/test-input-image.jpg"
# 获得文件名列表
filename_queue = tf.train.string_input_producer(tf.train.match_filenames_once(image_filename))
# 生成文件名队列
image_reader = tf.WholeFileReader()
_, image_file = image_reader.read(filename_queue)
# 通过阅读器返回一个键值对,其中value表示图像
image = tf.image.decode_jpeg(image_file)
# 通过tf.image.decode_jpeg解码函数对图片进行解码,得到图像.
sess = tf.Session()
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
print('the image is:', sess.run(image))
filename_queue.close(cancel_pending_enqueues=True)
coord.request_stop()
coord.join(threads)
image_label = b'\x01'
# Assume the label data is in a one-hot representation (00000001)
# 假设标签数据位于一个独热的(one-hot)编码表示中,(00000001) 二进制8位'x01'
# Convert the tensor into bytes, notice that this will load the entire image file
# 将张量转换为字节型,注意这会加载整个图像文件。
image_loaded = sess.run(image)
image_bytes = image_loaded.tobytes() # 将张量转化为字节类型.
image_height, image_width, image_channels = image_loaded.shape # Export TFRecord 导出TFRecord
writer = tf.python_io.TFRecordWriter("./output/training-image.tfrecord") # Don't store the width, height or image channels in this Example file to save space but not required.
# 样本文件中不保存图像的宽度/高度和通道数,以便节省不要求分配的空间.
example = tf.train.Example(features=tf.train.Features(feature={
'label': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_label])),
'image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_bytes]))
})) # This will save the example to a text file tfrecord
writer.write(example.SerializeToString()) # 序列化为字符串
writer.close()
# image = example.features.feature['image_bytes'].bytes_list.value
# label = example.features.feature['image_label'].int64_list.value
# 这样的方式进行读取.
"""标签的格式被称为独热编码(one-hot encoding)这是一种用于多类分类的有标签数据的常见的表示方法.
Stanford Dogs 数据集之所以被视为多类分类数据,是因为狗会被分类为单一品种,而非多个品种的混合,
在现实世界中,当预测狗的品种是,多标签解决方案通常较为有效,因为他们能够同时匹配属于多个品种的狗""" """
这段代码中,图像被加载到内存中并被转换为字节数组
image_bytes = image_loaded.tobytes()
然后通过tf.train.Example函数将values和labels以value的方式加载到example中,
example = tf.train.Example(features=tf.train.Features(feature={
'label': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_label])),
'image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_bytes]))
}))
example在写入保存到磁盘之前需要先通过SerializeToString()方法将其序列化为二进制字符串.
序列化是一种将内存对象转化为可安全传输到某种文件的格式.
上面序列化的样本现在被保存为一种可被加载的格式,并可被反序列化为这里的样本格式 由于图像被保存为TFRecord文件,可以被再次从TFRecord文件加载.这样比将图像及其标签分开加载会节省一些时间
"""
# Load TFRecord
# 加载TFRecord文件,获取文件名队列
tf_record_filename_queue = tf.train.string_input_producer(["./output/training-image.tfrecord"]) # Notice the different record reader, this one is designed to work with TFRecord files which may
# have more than one example in them.
# 注意这个不同的记录读取其,它的设计意图是能够使用可能会包含多个样本的TFRecord文件
tf_record_reader = tf.TFRecordReader()
_, tf_record_serialized = tf_record_reader.read(tf_record_filename_queue)
# 通过阅读器读取value值,并保存为tf_record_serialized # The label and image are stored as bytes but could be stored as int64 or float64 values in a
# serialized tf.Example protobuf.
# 标签和图像都按字节存储,但也可按int64或float64类型存储于序列化的tf.Example protobuf文件中
tf_record_features = tf.parse_single_example( # 这是一个模板化的东西,大部分都是这么写的
tf_record_serialized,
features={
'label': tf.FixedLenFeature([], tf.string),
'image': tf.FixedLenFeature([], tf.string),
})
"""
class FixedLenFeature(collections.namedtuple(
"FixedLenFeature", ["shape", "dtype", "default_value"])):""" """Configuration for parsing a fixed-length input feature.
用于解析固定长度的输入特性的配置。
To treat sparse input as dense, provide a `default_value`; otherwise,
the parse functions will fail on any examples missing this feature.
把稀疏的输入看作是稠密的,提供一个默认值;否则,解析函数将缺少属性值的情况下报错。
Fields:
shape: Shape of input data.输入数据的形状
dtype: Data type of input.输入数据类型
default_value: Value to be used if an example is missing this feature. It
must be compatible with `dtype` and of the specified `shape`.
如果一个示例缺少属性值,那么将使用该默认值。它必须与dtype和指定的形状兼容。
"""
# 但是在实际使用的过程中这里的features的是根据原先的保存时的名字对应的,而数据类型可以自行选取. # Using tf.uint8 because all of the channel information is between 0-255
# 使用tf.uint8类型,因为所有的通道信息都处于0~255的范围内
tf_record_image = tf.decode_raw(
tf_record_features['image'], tf.uint8)
# tf.decode_raw()函数将将字符串的字节重新解释为一个数字的向量。 # Reshape the image to look like the image saved, not required
# 调整图像的尺寸,使其与保存的图像类似,但这并不是必需的
tf_record_image = tf.reshape(
tf_record_image,
[image_height, image_width, image_channels])
# Use real values for the height, width and channels of the image because it's required
# 用是指表示图像的高度,宽度和通道,因为必须对输入的形状进行调整
# to reshape the input. tf_record_label = tf.cast(tf_record_features['label'], tf.string)
sess.close()
sess = tf.InteractiveSession()
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
print("equal the image before and now", sess.run(tf.equal(image, tf_record_image))) # 检查原始图像和加载后的图像是否一致
"""首先,按照与其他文件相同的方式加载该文件,主要区别在于该文件主要有TFRecordReaader对象读取.
tf.parse_single_example对TFRecord进行解析,然后图像按原始字节(tf.decode_raw)进行读取"""
print("The lable of the image:", sess.run(tf_record_label)) # 输出图像的标签
tf_record_filename_queue.close(cancel_pending_enqueues=True)
coord.request_stop()
coord.join(threads)

Notice

如果你想要复用这段代码,请将 image_filename, tf.python_io.TFRecordWriter, tf.train.string_input_producer 等处的文件保存参数修改成你自己的图片所在位置.

test-input-image图片下载地址

大图是这样的,运行请下载小图.

参考资料

面向机器智能的Tensorflow实践

[TFRecord格式数据]利用TFRecords存储与读取带标签的图片的更多相关文章

  1. java保存json格式数据,保存字符串和读取字符串

    1.java保存json格式数据,保存字符串和读取字符串 import java.io.*; class RWJson { public void wiite(String s, String toS ...

  2. 更加清晰的TFRecord格式数据生成及读取

    TFRecords 格式数据文件处理流程 TFRecords 文件包含了 tf.train.Example 协议缓冲区(protocol buffer),协议缓冲区包含了特征 Features.Ten ...

  3. tensorflow制作tfrecord格式数据

    tf.Example msg tensorflow提供了一种统一的格式.tfrecord来存储图像数据.用的是自家的google protobuf.就是把图像数据序列化成自定义格式的二进制数据. To ...

  4. hive 压缩全解读(hive表存储格式以及外部表直接加载压缩格式数据);HADOOP存储数据压缩方案对比(LZO,gz,ORC)

    数据做压缩和解压缩会增加CPU的开销,但可以最大程度的减少文件所需的磁盘空间和网络I/O的开销,所以最好对那些I/O密集型的作业使用数据压缩,cpu密集型,使用压缩反而会降低性能. 而hive中间结果 ...

  5. tensorflow学习笔记(10) mnist格式数据转换为TFrecords

    本程序 (1)mnist的图片转换成TFrecords格式 (2) 读取TFrecords格式 # coding:utf-8 # 将MNIST输入数据转化为TFRecord的格式 # http://b ...

  6. (第二章第四部分)TensorFlow框架之TFRecords数据的存储与读取

    系列博客链接: (第二章第一部分)TensorFlow框架之文件读取流程:https://www.cnblogs.com/kongweisi/p/11050302.html (第二章第二部分)Tens ...

  7. "笨方法"学习CNN图像识别(二)—— tfrecord格式高效读取数据

    原文地址:https://finthon.com/learn-cnn-two-tfrecord-read-data/-- 全文阅读5分钟 -- 在本文中,你将学习到以下内容: 将图片数据制作成tfre ...

  8. 利用python进行数据分析之数据加载存储与文件格式

    在开始学习之前,我们需要安装pandas模块.由于我安装的python的版本是2.7,故我们在https://pypi.python.org/pypi/pandas/0.16.2/#downloads ...

  9. python多种格式数据加载、处理与存储

    多种格式数据加载.处理与存储 实际的场景中,我们会在不同的地方遇到各种不同的数据格式(比如大家熟悉的csv与txt,比如网页HTML格式,比如XML格式),我们来一起看看python如何和这些格式的数 ...

随机推荐

  1. Java眼中的XML文件写入

    创建DOM方式生成XML文档 DOMTest package com.imooc.domtest.test; import java.io.File; import java.io.IOExcepti ...

  2. CSS清除浮动的几种方式

    浮动对页面的影响: 如果一个父盒子中有一个子盒子,并且父盒子没有设置高,子盒子在父盒子中进行了浮动,那么将来父盒子的高度为0.由于父盒子的高度为0, 下面的元素会自动补位,所以这个时候要进行浮动的清除 ...

  3. Jfinal-Plugin源码解读

    PS:cnxieyang@163.com/xieyang@e6yun.com 本文就Jfinal-plugin的源码进行分析和解读 Plugin继承及实现关系类图如下,常用的是Iplugin的三个集成 ...

  4. python对pywifi模块的认识

    pywifi是一个用来搞wifi的模块 下一章我们将用他破解wifi密码 pywifi安装 pip install pywifi 下列代码判断是否有无限网卡 import pywifi import ...

  5. cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  6. JavaSE(十一)之异常处理详解

    一.异常概述 在我们日常生活中,有时会出现各种各样的异常,例如:职工小王开车去上班,在正常情况下,小王会准时到达单位.但是天有不测风云,在小王去上班时,可能会遇到一些异常情况,比如小王的车子出了故障, ...

  7. BC#65T4 ZYB's Tree

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5593 点分治被卡了TAT... 正解是dp,可以按层数考虑dp,先预处理跑一边dfs得到子树各层数点数大小 ...

  8. Thinking in Java学习笔记-泛型和类型安全的容器

    示例: public class Apple { private static long counter; private final long id = counter++; public long ...

  9. TI-RTOS 定时器的使用

    定时器 在TI-RTOS中属于内核的一部分,因此想了解它的使用还是要阅读Bios_User_Guide.pdf. 主要用到这么几个API, 加粗字体 更多的定义可以在 ..\packages\ti\s ...

  10. GATT之Device information Service

    许多开发者都在开发BLE Peripheral设备,当中往往包含本文要着急介绍的Device Information Service(DIS)服务,它是对设备的制作商,设备软硬件版本控制,生产信息披露 ...