Nowadays, I am reading D.J.Benson's nice book, volume I of Representations and cohomology. I found it has a nice description on Dynkin diagrams. So I want to make a note on it and on it here. If the application is successful, I will have more time on Mathematiques intersting me. If the time permits, I will make anther note about the relationship of root system and Dynkin diagrams.

Contents

Dynkin diagrams and Euclidean diagrams

The following labeled graphs are called Dynkin diagrams

  • $A_n$($n\geq1$) 
  • $B_n$($n\geq 2$)
  • $C_n$($n\geq 2$)
  • $D_n$($n\geq 4$)
  • $E_6$; $E_7$; $E_8$
  • $F_4$

  • $G_2$

The foot index illustrates the number of nodes. And and  stands a edge labelled by $(1,1)$, $(2,1)$ and $(3,1)$ respectively.

The following labeled graphs are called Euclidean diagrams

  • $\tilde{A}_n$($n\geq 1$); $\tilde{A}_{11}$; $\tilde{A}_{12}$.
  • $\tilde{B}_n$($n\geq 3$)
  • $\tilde{C}_n$($n\geq 3$)
  • $\tilde{D}_n$($n\geq 5$)
  • $\widetilde{BC}_n$($n\geq 3$)
  • $\widetilde{BD}_n$($n\geq 4$)
  • $\widetilde{CD}_n$($n\geq 4$)
  • $\tilde{E}_6$; $\tilde{E}_7$; $\tilde{E}_8$ 

  • $\tilde{F}_{41}$; $\tilde{F}_{42}$

  • $\tilde{G}_{21}$; $\tilde{G}_{22}$

The sum of foot index illustrates the number of nodes.

Cartan matrix and characterization of Dynkin diagrams using subadditve functions

Definition. For a labelled graph $G=(V,E)$, defined its Cartan matrix $(c_{xy})_{x,y\in V}$ where $$c_{xy}=2\delta_{xy}-\sum_{\textrm{all edges }x\stackrel{(a,b)}\longrightarrow y} a$$where $\delta_{xy}=1$ if $x=y$ and vanishes if $x\neq y$. A function $n: V\to \mathbb{Z}_{>0}$ is called subadditive if $$\forall y\in V, \qquad \sum_{x\in V} n_xc_{xy}\geq 0$$ And is called additive if $$\forall y\in V, \qquad \sum_{x\in V} n_xc_{xy}= 0$$ Clearly, subadditivity implies additivity.

We will show that Dynkin diagram and Euclidean diagrams are the only finite connected diagrams admitting a subadditive function, and Euclidean diagrams are the only ones admitting an addtive function.

We need three lemmas.

Lemma 1. Any finite connected labelled graph $T$, either $T$ is a Dynkin diagram or there is a Euclidean diagram smaller than $T$. Where "smaller" means both "subgraph" and "smaller" in the numbers of the label. Note that in the definition of labelled graph, all the number in labels are taken to be positive integers.

Proof is just exclude the possibilities of not being Dynkin diagram.

Lemma 2. Suppose $T$ and $T'$ are connected labelled graphs and $T$ is strickly smaller than $T'$, if $n$ is a subadditve function on $T'$, then the restriction of $n$ over $T$ is subadditve but not additive.

Proof. For any vertex $y$ of $T$, we have $$0\leq \sum_x n_xc'_{xy}=2n_y-\sum_{\textrm{all edges } x\stackrel{(a,b)}\longrightarrow y\textrm{ in $T'$}}n_x a\geq  2n_y-\sum_{\textrm{all edges } x\stackrel{(a,b)}\longrightarrow y\textrm{ in $T$}}n_x a=\sum_x n_xc_{xy}$$Since $T$ is strictly smaller, the inequality can not achieve for some $y$. The proof is complete. $\square$

Lemma 3. Any finite connected labelled graph $T$, if $T^{\mathsf{op}}$ admits an additive function, then any subadditve function over $T$ is additive.

Proof.  Assume $T^{\mathsf{op}}$ admits an additive function $n$, then $\sum c_{yx}n_x=0$. Then for any subadditive function $m$ over $T$, we have$$0=\sum_ym_y\bigg(\sum_{x} c_{yx}n_x\bigg)=\sum_{x}n_x \bigg(\sum_{y}m_yc_{yx}\bigg)$$The sum is a series of non-negetive integer, so we have $\sum_{y}m_yc_{yx}=0$. $\square$

And it suffices to prove there exists an additive function on each Euclidean diagrams. As following

(To check the additivity, just check that the sum of number "come in" equals to 2 times of the number of point. )

Now, we can conclude the discription of Euclidean diagrams and Dynkin diagrams

Theroem. If a finite connected labelled graph $T$ admits a subaddtive function iff $T$ is either a Dynkin diagram or a Euclidean diagram. If furthermore, $T$ admits an additive function iff$T$ is a Euclidean diagram.

Proof. By the above lemmas.

Characterization using positive definity of Cartan's matrix

Using the characterization above, one can easily deriver the following characerization

Theroem. Given a finite connected labelled graph $T$, let $C$ be its Cartan matrix. $C$ is semidefinite iff $T$ is either a Dynkin diagram or a Euclidean diagram. Furthermore, $C$ is positive definite iff $T$ is a Dynkin diagram.

Proof. For an Euclidean diagram, let $n$ be an additive function, note that the condition of additivity implies for any fixed $x$, $\sum_{y\neq x}\frac{n_y c_{yx}}{n_x}=-2$, then$$\begin{array}{rl}\sum_{x,y\in V}a_xa_yc_{xy} & =2\sum_{x\in V}a_x^2+\sum_{x\neq y} a_xa_yc_{xy} \\ & =-\sum_{x\in V}\frac{a_x^2n_yc_{yx}}{n_x}+\sum_{x\neq y} a_xa_yc_{xy}   \\& = -\frac{1}{2}\sum_{x\neq y}\big(\frac{a_x^2n_yc_{yx}}{n_x}+\frac{a_y^2n_xc_{xy}}{n_y}\big)+\sum_{x\neq y} a_xa_yc_{xy} \\ & =-\frac{1}{2}\sum_{x\neq y} n_xn_yc_{xy}\big(\frac{a_x}{n_x}-\frac{a_y}{n_y}\big)^2\geq 0\end{array}$$ Then, it is not difficult to see that the Cartan matrix is positive definite for Dynkin diagram, merely because Dynkin diagrams are exactly the graph strictly smaller than Euclidean diagrams. To prove when $T$ is neither a Dynkin diagram nor a Euclidean diagram. By the lemma above, there are some Euclidean diagram $T'$ strictly smaller than $T$. If $T$ contains all points of $T'$, then $(n_x)$ such that $\sum n_xn_yc_{xy}<0$, otherwise, pick a point, say $v$, in $T$ but not in $T'$, then $n'_x=\begin{cases}n_x & \textrm{$x$ in $T$} \\ \epsilon & x=v \\ 0 & \textrm{otherwise}\end{cases}$, then $$\begin{array}{rl}\sum n'_xn'_y c_{xy} &  =\sum n_xn_yc_{xy}+2\epsilon^2+\underbrace{\bigg(\sum_{x\in V}c_{xv}\bigg)}_{<0}\epsilon \\ & \leq 0+ 2\epsilon^2+\underbrace{\bigg(\sum_{x\in V}c_{xv}\bigg)}_{<0}\epsilon\end{array}$$Take $\epsilon$ sufficient small, the above is strictly negetive. $\square$

Characterization of Dynkin diagrams的更多相关文章

  1. EF:split your EDMX file into multiple diagrams

    我们可以把一个EDMX文件划分为多个类图: 1.在VS中打开EDMX设计器: 2.切换到“模型浏览器”属性设置窗口: 3.在diagrams上右键菜单中选择“添加新的关系图”: 4.在原来的关系图上可 ...

  2. How to generate UML Diagrams from Java code in Eclipse

    UML diagrams compliment inline documentation ( javadoc ) and allow to better explore / understand a ...

  3. codeforces Diagrams & Tableaux1 (状压DP)

    http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...

  4. (转) Deep learning architecture diagrams

    FastML Machine learning made easy RSS Home Contents Popular Links Backgrounds About Deep learning ar ...

  5. Class diagrams

    So far we have seen stack diagrams, which show the state of a program, and object diagrams, which sh ...

  6. [RxJS] Marble diagrams in ASCII form

    There are many operators available, and in order to understand them we need to have a simple way of ...

  7. 条形图(diagrams)

    条形图(diagrams) 题目描述 小 虎刚上了幼儿园,老师让他做一个家庭作业:首先画3行格子,第一行有3个格子,第二行有2个格子,第三行有3个格子.每行的格子从左到右可以放棋子,但要 求除第一行外 ...

  8. Generating Sankey Diagrams from rCharts

    A couple of weeks or so ago, I picked up an inlink from an OCLC blog post about Visualizing Network ...

  9. Reliability diagrams

    Reliability diagrams (Hartmann et al. 2002) are simply graphs of the Observed frequency of an event ...

随机推荐

  1. Java 枚举类详解

    1. 枚举类定义 在某些情况下,一个类的对象是有限而且固定的,比如季节类,它只有4个对象,这种实例有限而且固定的类,在Java里被称为枚举类. 2. 早期实现枚举的方式 public static f ...

  2. nginx部署静态网站

    实验环境 服务器:centos7.5 1核1G Nginx版本:nginx-1.14.2 主题 部署静态文件 根据不同url请求路径,定向到不同的系统文件夹 部署静态文件 假设nginx安装在“/us ...

  3. Java核心基础学习(一)--- 2019年1月

    1.对比Exception和Error,运行时异常与一般异常 Exception 和 Error 都继承了 Throwable 类,在 Java 中只有 Throwable 类才能 thorw(抛出) ...

  4. Python存储系统(Redis)

    存储系统数据缓存一般会使用三个模块:Mongodb,redis,memcache.其中memcache是轻量级缓存,只能将数据保存到内存中,redis可以配置数据保存在内存还是硬盘. 其主要用途有:不 ...

  5. 文本离散表示(二):新闻语料的one-hot编码

    上一篇博客介绍了文本离散表示的one-hot.TF-IDF和n-gram方法,在这篇文章里,我做了一个对新闻文本进行one-hot编码的小实践. 文本的one-hot相对而言比较简单,我用了两种方法, ...

  6. dev treelist和searchcontrol组合模糊查询用法

    这里需要用到两个控件,是dev的treelist和searchcontrol,首先呢树形控件要形成树形我在这就不多说了 因为这里是记录下searchcontrol这控件的用法 首先写这三行代码,里面都 ...

  7. 利用GitLab webhook来实现触发Jenkins自动操作

    本文针对如何设置GitLab以及Jenkins,实现每次GitLab上有提交事件的时候,都能触发Jenkins执行相应的操作,主要分为以下几个步骤: 1.新建GitLab测试用例 进入个人GitLab ...

  8. vue里如何灵活的绑定class以及内联style

    在我们平常的前端开发中少不了对DOM的操作,以及样式的动态控制,那我们在使用vue的时候该如何灵活的绑定class呢 1.最简单一个class绑定 v-bind:class设置一个对象,可以动态地切换 ...

  9. [Vue] vuex进行组件间通讯

    vue 组件之间数据传输(vuex) 初始化 store src/main.js import Vuex from "vuex"; Vue.use(Vuex); new Vue({ ...

  10. EF获取多个数据集以及MySQL分页数据查询优化

    背景:MySQL分页查询语句为 ,10; 一般页面还会获取总条数,这时候还需要一条查询总条数语句 , 这样数据库需要执行两次查询操作.MySQL提供了SQL_CALC_FOUND_ROWS追踪总条数的 ...