Nowadays, I am reading D.J.Benson's nice book, volume I of Representations and cohomology. I found it has a nice description on Dynkin diagrams. So I want to make a note on it and on it here. If the application is successful, I will have more time on Mathematiques intersting me. If the time permits, I will make anther note about the relationship of root system and Dynkin diagrams.

Contents

Dynkin diagrams and Euclidean diagrams

The following labeled graphs are called Dynkin diagrams

  • $A_n$($n\geq1$) 
  • $B_n$($n\geq 2$)
  • $C_n$($n\geq 2$)
  • $D_n$($n\geq 4$)
  • $E_6$; $E_7$; $E_8$
  • $F_4$

  • $G_2$

The foot index illustrates the number of nodes. And and  stands a edge labelled by $(1,1)$, $(2,1)$ and $(3,1)$ respectively.

The following labeled graphs are called Euclidean diagrams

  • $\tilde{A}_n$($n\geq 1$); $\tilde{A}_{11}$; $\tilde{A}_{12}$.
  • $\tilde{B}_n$($n\geq 3$)
  • $\tilde{C}_n$($n\geq 3$)
  • $\tilde{D}_n$($n\geq 5$)
  • $\widetilde{BC}_n$($n\geq 3$)
  • $\widetilde{BD}_n$($n\geq 4$)
  • $\widetilde{CD}_n$($n\geq 4$)
  • $\tilde{E}_6$; $\tilde{E}_7$; $\tilde{E}_8$ 

  • $\tilde{F}_{41}$; $\tilde{F}_{42}$

  • $\tilde{G}_{21}$; $\tilde{G}_{22}$

The sum of foot index illustrates the number of nodes.

Cartan matrix and characterization of Dynkin diagrams using subadditve functions

Definition. For a labelled graph $G=(V,E)$, defined its Cartan matrix $(c_{xy})_{x,y\in V}$ where $$c_{xy}=2\delta_{xy}-\sum_{\textrm{all edges }x\stackrel{(a,b)}\longrightarrow y} a$$where $\delta_{xy}=1$ if $x=y$ and vanishes if $x\neq y$. A function $n: V\to \mathbb{Z}_{>0}$ is called subadditive if $$\forall y\in V, \qquad \sum_{x\in V} n_xc_{xy}\geq 0$$ And is called additive if $$\forall y\in V, \qquad \sum_{x\in V} n_xc_{xy}= 0$$ Clearly, subadditivity implies additivity.

We will show that Dynkin diagram and Euclidean diagrams are the only finite connected diagrams admitting a subadditive function, and Euclidean diagrams are the only ones admitting an addtive function.

We need three lemmas.

Lemma 1. Any finite connected labelled graph $T$, either $T$ is a Dynkin diagram or there is a Euclidean diagram smaller than $T$. Where "smaller" means both "subgraph" and "smaller" in the numbers of the label. Note that in the definition of labelled graph, all the number in labels are taken to be positive integers.

Proof is just exclude the possibilities of not being Dynkin diagram.

Lemma 2. Suppose $T$ and $T'$ are connected labelled graphs and $T$ is strickly smaller than $T'$, if $n$ is a subadditve function on $T'$, then the restriction of $n$ over $T$ is subadditve but not additive.

Proof. For any vertex $y$ of $T$, we have $$0\leq \sum_x n_xc'_{xy}=2n_y-\sum_{\textrm{all edges } x\stackrel{(a,b)}\longrightarrow y\textrm{ in $T'$}}n_x a\geq  2n_y-\sum_{\textrm{all edges } x\stackrel{(a,b)}\longrightarrow y\textrm{ in $T$}}n_x a=\sum_x n_xc_{xy}$$Since $T$ is strictly smaller, the inequality can not achieve for some $y$. The proof is complete. $\square$

Lemma 3. Any finite connected labelled graph $T$, if $T^{\mathsf{op}}$ admits an additive function, then any subadditve function over $T$ is additive.

Proof.  Assume $T^{\mathsf{op}}$ admits an additive function $n$, then $\sum c_{yx}n_x=0$. Then for any subadditive function $m$ over $T$, we have$$0=\sum_ym_y\bigg(\sum_{x} c_{yx}n_x\bigg)=\sum_{x}n_x \bigg(\sum_{y}m_yc_{yx}\bigg)$$The sum is a series of non-negetive integer, so we have $\sum_{y}m_yc_{yx}=0$. $\square$

And it suffices to prove there exists an additive function on each Euclidean diagrams. As following

(To check the additivity, just check that the sum of number "come in" equals to 2 times of the number of point. )

Now, we can conclude the discription of Euclidean diagrams and Dynkin diagrams

Theroem. If a finite connected labelled graph $T$ admits a subaddtive function iff $T$ is either a Dynkin diagram or a Euclidean diagram. If furthermore, $T$ admits an additive function iff$T$ is a Euclidean diagram.

Proof. By the above lemmas.

Characterization using positive definity of Cartan's matrix

Using the characterization above, one can easily deriver the following characerization

Theroem. Given a finite connected labelled graph $T$, let $C$ be its Cartan matrix. $C$ is semidefinite iff $T$ is either a Dynkin diagram or a Euclidean diagram. Furthermore, $C$ is positive definite iff $T$ is a Dynkin diagram.

Proof. For an Euclidean diagram, let $n$ be an additive function, note that the condition of additivity implies for any fixed $x$, $\sum_{y\neq x}\frac{n_y c_{yx}}{n_x}=-2$, then$$\begin{array}{rl}\sum_{x,y\in V}a_xa_yc_{xy} & =2\sum_{x\in V}a_x^2+\sum_{x\neq y} a_xa_yc_{xy} \\ & =-\sum_{x\in V}\frac{a_x^2n_yc_{yx}}{n_x}+\sum_{x\neq y} a_xa_yc_{xy}   \\& = -\frac{1}{2}\sum_{x\neq y}\big(\frac{a_x^2n_yc_{yx}}{n_x}+\frac{a_y^2n_xc_{xy}}{n_y}\big)+\sum_{x\neq y} a_xa_yc_{xy} \\ & =-\frac{1}{2}\sum_{x\neq y} n_xn_yc_{xy}\big(\frac{a_x}{n_x}-\frac{a_y}{n_y}\big)^2\geq 0\end{array}$$ Then, it is not difficult to see that the Cartan matrix is positive definite for Dynkin diagram, merely because Dynkin diagrams are exactly the graph strictly smaller than Euclidean diagrams. To prove when $T$ is neither a Dynkin diagram nor a Euclidean diagram. By the lemma above, there are some Euclidean diagram $T'$ strictly smaller than $T$. If $T$ contains all points of $T'$, then $(n_x)$ such that $\sum n_xn_yc_{xy}<0$, otherwise, pick a point, say $v$, in $T$ but not in $T'$, then $n'_x=\begin{cases}n_x & \textrm{$x$ in $T$} \\ \epsilon & x=v \\ 0 & \textrm{otherwise}\end{cases}$, then $$\begin{array}{rl}\sum n'_xn'_y c_{xy} &  =\sum n_xn_yc_{xy}+2\epsilon^2+\underbrace{\bigg(\sum_{x\in V}c_{xv}\bigg)}_{<0}\epsilon \\ & \leq 0+ 2\epsilon^2+\underbrace{\bigg(\sum_{x\in V}c_{xv}\bigg)}_{<0}\epsilon\end{array}$$Take $\epsilon$ sufficient small, the above is strictly negetive. $\square$

Characterization of Dynkin diagrams的更多相关文章

  1. EF:split your EDMX file into multiple diagrams

    我们可以把一个EDMX文件划分为多个类图: 1.在VS中打开EDMX设计器: 2.切换到“模型浏览器”属性设置窗口: 3.在diagrams上右键菜单中选择“添加新的关系图”: 4.在原来的关系图上可 ...

  2. How to generate UML Diagrams from Java code in Eclipse

    UML diagrams compliment inline documentation ( javadoc ) and allow to better explore / understand a ...

  3. codeforces Diagrams & Tableaux1 (状压DP)

    http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...

  4. (转) Deep learning architecture diagrams

    FastML Machine learning made easy RSS Home Contents Popular Links Backgrounds About Deep learning ar ...

  5. Class diagrams

    So far we have seen stack diagrams, which show the state of a program, and object diagrams, which sh ...

  6. [RxJS] Marble diagrams in ASCII form

    There are many operators available, and in order to understand them we need to have a simple way of ...

  7. 条形图(diagrams)

    条形图(diagrams) 题目描述 小 虎刚上了幼儿园,老师让他做一个家庭作业:首先画3行格子,第一行有3个格子,第二行有2个格子,第三行有3个格子.每行的格子从左到右可以放棋子,但要 求除第一行外 ...

  8. Generating Sankey Diagrams from rCharts

    A couple of weeks or so ago, I picked up an inlink from an OCLC blog post about Visualizing Network ...

  9. Reliability diagrams

    Reliability diagrams (Hartmann et al. 2002) are simply graphs of the Observed frequency of an event ...

随机推荐

  1. scrapy爬虫 快速入门

    Scrapy 1. 简介 Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中.其最初是为了页面抓取 (更确切来说, 网络 ...

  2. [翻译]各个类型的IO - 阻塞, 非阻塞,多路复用和异步

    同事推荐,感觉写的不错就试着翻译了下. 原文链接: https://www.rubberducking.com/2018/05/the-various-kinds-of-io-blocking-non ...

  3. 机器学习算法GBDT的面试要点总结-上篇

    1.简介 gbdt全称梯度下降树,在传统机器学习算法里面是对真实分布拟合的最好的几种算法之一,在前几年深度学习还没有大行其道之前,gbdt在各种竞赛是大放异彩.原因大概有几个,一是效果确实挺不错.二是 ...

  4. .NET Core微服务之基于Steeltoe使用Spring Cloud Config统一管理配置

    Tip: 此篇已加入.NET Core微服务基础系列文章索引 =>  Steeltoe目录快速导航: 1. 基于Steeltoe使用Spring Cloud Eureka 2. 基于Steelt ...

  5. MySQL视图简介与操作

    1.准备工作 在MySQL数据库中创建两张表balance(余额表)和customer(客户表)并插入数据. create table customer( id int(10) primary key ...

  6. C#面试考点集锦

    C#面试考点集锦 ©智客坊      岁末年初往往是程序猿准备跳槽的高峰,当然互联网行业跳槽几乎是每个月都在发生,没有太过明显的淡季~那么,如何提高面试的通过率,最终顺利的拿到自己心仪的offer呢? ...

  7. SQLServer事务在C#当中的应用

    1:事务是什么 事务指的是一系列SQL操作的逻辑工作单元,,要么完全地执行,要么完全地不执行. 一个逻辑工作单元必须有4个属性,原子性(Atomic).一致性(Consistent).隔离型(Isol ...

  8. Php7.3 could not find driver

    今天phpstudy升级php7.3,发现框架报错:could not find driver,后来发现默认php.ini的配置有几个是注释掉的,配置php.ini,修改如下 extension=my ...

  9. 可编辑且宽度自适应input

    默认的input项是比较难看的,并且它的宽度还无法随着输入而变化,这样未免有些呆板,不过借助JavaScript可以达到宽度自适应的效果,下面为了方便使用了jQuery: <div class= ...

  10. linux 子系统折腾记 (三)

    所以说,英文真是个好东西,很多资料都只有英文版本,要是不懂英文,甚至你不知道这个资料的存在,更别提用蹩脚的翻译软件去翻译了. wsl 的资料:https://docs.microsoft.com/zh ...