前言

通常 Web 服务器在处理请求时,都会使用过滤器模式,无论是 Tomcat ,还是 Netty,过滤器的好处是能够将处理的流程进行分离和解耦,比如一个 Http 请求进入服务器,可能需要解析 http 报头,权限验证,国际化处理等等,过滤器可以很好的将这些过程隔离,并且,过滤器可以随时卸载,安装。

每个 Web 服务器的过滤器思想都是类似的,只是实现方式略有不同。

比如 Tomcat,Tomcat 使用了一个 FilterChain 对象保存了所有的 filter,通过循环所有 filter 来完成过滤处理。关于 Tomcat 的过滤器源码请看楼主之前的文章:

深入理解 Tomcat(九)源码剖析之请求过程

Netty 使用了 pipeline 作为过滤器管道,管道中使用 handler 做拦截处理,而 handler 使用一个 handlerInvoker(Context) 做隔离处理,也就是将 handler 和 handler 隔离开来,中间使用 这个 Context 上下文进行流转。关于 Netty 的 pipeline 可以查看楼主之前的文章 :

Netty 核心组件 Pipeline 源码分析(一)之剖析 pipeline 三巨头

Netty 核心组件 Pipeline 源码分析(二)一个请求的 pipeline 之旅

而 SOFA 使用了和上面的两个略有不同,我们今天通过源码分析一下。

设计

SOFA 的过滤器由 3 个主要的类组成:

  1. FilterInvoker 过滤器包装的Invoker对象,主要是隔离了filter和service的关系;
  2. Filter 过滤器(可通过 SPI 扩展)
  3. FilterChain 过滤器链起始接口,其实就是一个 Invoker。

我们看看这 3 个类的主要方法,就知道如何设计的了。

Filter 主要方法:

public abstract SofaResponse invoke(FilterInvoker invoker, SofaRequest request) throws SofaRpcException;

invoke 方法,是一个抽象方法,用户可以自己实现,而方法体就是用户的处理逻辑。通常这个方法的结尾是:

return invoker.invoke(request);

调用了参数 invoker 对象的 invoke 方法。我们看看这个 FilterInvoker 。

FilterInvoker 主要方法

构造方法:

public FilterInvoker(Filter nextFilter, FilterInvoker invoker, AbstractInterfaceConfig config) {
this.nextFilter = nextFilter;
this.invoker = invoker;
this.config = config;
if (config != null) {
this.configContext = config.getConfigValueCache(false);
}
}

楼主这里介绍一下他的主要构造方法。传入一个 filter,一个 invoker。

这个 filter 就是当前 invoker 包装的过滤器,而参数 invoker 就是他的下一个 invoker 节点。当执行 FilterInvoker 的 invoke 方法的时候,通常会调用 filter 的 invoke 方法,并传入 invoker 参数。

这就回到我们上面分析的 filter 的 invoke 方法,该方法内部会调用 invoker 的 invoke 方法,完成一次轮回。

再看看 FilterChain 。

FilterChain 主要方法

FilterChain 是框架直接操作的实例,每个调用者都间接持有一个 FilterChain 实例,而这个实例相当于过滤器链表的头节点。

构造方法:

protected FilterChain(List<Filter> filters, FilterInvoker lastInvoker, AbstractInterfaceConfig config) {
// 调用过程外面包装多层自定义filter
// 前面的过滤器在最外层
invokerChain = lastInvoker;
if (CommonUtils.isNotEmpty(filters)) {
loadedFilters = new ArrayList<Filter>();
for (int i = filters.size() - 1; i >= 0; i--) {// 从最大的开始,从小到大开始执行
Filter filter = filters.get(i);
if (filter.needToLoad(invokerChain)) {
invokerChain = new FilterInvoker(filter, invokerChain, config);
// cache this for filter when async respond
loadedFilters.add(filter);
}
}
}
}

在构造过滤器链的时候,会传入一个过滤器数组,并传入一个 FilterInvoker,这个 Invoker 是真正的业务方法,框架会在该 invoke 方法中反射调用接口的实现类,也就是业务代码。

上面的构造方法主要逻辑是:

倒序循环 List 中的 Filter 实例,将 Filter 用 FilterInvoker 封装,并传入上一个 FilterInvoker 到 FilterInvoker 的构造方法中,形成链表。而单独传入的 FilterInvoker 则会放到最后一个节点。`

所以,最终,当 FilterChain 调用过滤器链的时候,会从 order 最小的过滤器开始,最后执行业务方法。

注意:SOFA 过滤器中,真正执行业务方法的不是 Filter,而是 FilterInvoker 的具体实现类,在 invoke 方法中,会反射调用接口实现类的方法。原因是过滤器最后调用的 invoker.invoke。就不用再构造一个 filter 了。

以上就是 SOFA 的过滤器设计。从总体上来讲,和 Tomcat 的 过滤器类似,只是 Tomcat 使用的数组,并且将 Service 区分看待,即执行完所有的过滤器后,执行 Service。而 SOFA 使用的是一个链表,并没有区分对待 Service。

One more thing

Filter 是个接口,并且标注了 @Extensible(singleton = false) 注解,表示这是一个扩展点,这个是 SOFA 微内核的一个设计。所有的中间件都可以通过扩展点加入到框架中。

而扩展点其实有点类似 Spring 的 Bean,Spring Bean 和核心数据结构是 BeanDefine,SOFA 的 扩展点核心数据结构则是 ExtensionClass,该类定义了扩展点的所有相关信息。

SOFA 会将所有的扩展点放在一个 ExtensionLoader 的 ConcurrentHashMap<String, ExtensionClass> 中。

ExtensionLoader 可以称之为扩展类加载器,一个 ExtensionLoader 对应一个可扩展的接口。

总结

从设计上来说,SOFA 的过滤器更类似 Tomcat 的过滤器,相对于 Netty 的过滤器各有特色。Netty 的过滤器可以随时插拔,也许从业务上来说,SOFA 并不需要这样的功能吧。

而同时,Filter 基于 SOFA 的扩展点来的。Dubbo 作者说过:

大凡发展的比较好的框架,都遵守微核的理念,

Eclipse的微核是OSGi, Spring的微核是BeanFactory,Maven的微核是Plexus,

通常核心是不应该带有功能性的,而是一个生命周期和集成容器,

这样各功能可以通过相同的方式交互及扩展,并且任何功能都可以被替换,

如果做不到微核,至少要平等对待第三方,

即原作者能实现的功能,扩展者应该可以通过扩展的方式全部做到,

原作者要把自己也当作扩展者,这样才能保证框架的可持续性及由内向外的稳定性。

微核插件式,平等对待第三方 对于框架来说,非常重要。

SOFA 源码分析 —— 过滤器设计的更多相关文章

  1. SOFA 源码分析 —— 服务引用过程

    前言 在前面的 SOFA 源码分析 -- 服务发布过程 文章中,我们分析了 SOFA 的服务发布过程,一个完整的 RPC 除了发布服务,当然还需要引用服务. So,今天就一起来看看 SOFA 是如何引 ...

  2. [转]Libev源码分析 -- 整体设计

    Libev源码分析 -- 整体设计 libev是Marc Lehmann用C写的高性能事件循环库.通过libev,可以灵活地把各种事件组织管理起来,如:时钟.io.信号等.libev在业界内也是广受好 ...

  3. Spring5源码分析(1)设计思想与结构

    1 源码地址(带有中文注解)git@github.com:yakax/spring-framework-5.0.2.RELEASE--.git Spring 的设计初衷其实就是为了简化我们的开发 基于 ...

  4. SOFA 源码分析 — 自动故障剔除

    前言 集群中通常一个服务有多个服务提供者.其中部分服务提供者可能由于网络,配置,长时间 fullgc ,线程池满,硬件故障等导致长连接还存活但是程序已经无法正常响应.单机故障剔除功能会将这部分异常的服 ...

  5. SOFA 源码分析 — 负载均衡和一致性 Hash

    前言 SOFA 内置负载均衡,支持 5 种负载均衡算法,随机(默认算法),本地优先,轮询算法,一致性 hash,按权重负载轮询(不推荐,已被标注废弃). 一起看看他们的实现(重点还是一致性 hash) ...

  6. SOFA 源码分析— 事件总线

    前言 大部分框架都是事件订阅功能,即观察者模式,或者叫事件机制.通过订阅某个事件,当触发事件时,回调某个方法.该功能非常的好用,而 SOFA 内部也设计了这个功能,并且内部大量使用了该功能.来看看是如 ...

  7. SOFA 源码分析 — 链路数据透传

    前言 SOFA-RPC 支持数据链路透传功能,官方解释: 链路数据透传功能支持应用向调用上下文中存放数据,达到整个链路上的应用都可以操作该数据. 使用方式如下,可分别向链路的 request 和 re ...

  8. SOFA 源码分析 —— 服务发布过程

    前言 SOFA 包含了 RPC 框架,底层通信框架是 bolt ,基于 Netty 4,今天将通过 SOFA-RPC 源码中的例子,看看他是如何发布一个服务的. 示例代码 下面的代码在 com.ali ...

  9. Struts2 源码分析——过滤器(Filter)

    章节简言 上一章笔者试着建一个Hello world的例子.是一个空白的struts2例子.明白了运行struts2至少需要用到哪一些Jar包.而这一章笔者将根据前面章节(Struts2 源码分析—— ...

随机推荐

  1. jsoup详解

    json相信大家都用的多,jsonp我就一直没有机会用到,但也经常看到,只知道是"用来跨域的",一直不知道具体是个什么东西.今天总算搞明白了.下面一步步来搞清楚jsonp是个什么玩 ...

  2. Linux IPC实践(13) --System V IPC综合实践

    实践:实现一个先进先出的共享内存shmfifo 使用消息队列即可实现消息的先进先出(FIFO), 但是使用共享内存实现消息的先进先出则更加快速; 我们首先完成C语言版本的shmfifo(基于过程调用) ...

  3. Linux0.11中对文本文件进行修改的策略

    现在,假设 hello.txt 是硬盘上已有的一个文件,而且内容为 "hello, world" ,在文件的当前指针设置完毕后,我们来介绍 sys_read , sys_write ...

  4. PDA智能设备解决方案打包及部署

    演练:打包智能设备解决方案以便进行部署 Visual Studio 2008 本演练演示如何使用 Visual Studio 将应用程序及其资源打包到一个 CAB 文件中,以便可将其部署到最终用户的智 ...

  5. SpriteBuilder中音频文件格式的需要注意的地方

    就像在SpriteBuilder项目子目录中的其他资源文件一样,音频文件夹需要确定完整的文件夹路径. 并且如果音频文件输出格式为MP4,则扩展为.m4a(audio-only MPEG4)而不是.mp ...

  6. eclipse或者AS链接手机真机之后,logcat里面日志信息乱跳

    乱跳的日志信息不会对应用产生影响,但是它会影响视觉,影响查看logcat.那主要原因在哪里呢 ? 这是由于手机里面,正在的运行的进程太多导致的.^_^ 因此课件添加过滤器的作用之大. 对了,在logc ...

  7. Gradle 1.12用户指南翻译——第三十八章. Eclipse 插件

    本文由CSDN博客万一博主翻译,其他章节的翻译请参见: http://blog.csdn.net/column/details/gradle-translation.html 翻译项目请关注Githu ...

  8. C语言可变参实现参数累加返回

    C语言可变参的作用真的是非常大,自从发表了可变参如何实现printf,fprintf,sprintf的文章以来,便有不少博友私信问我实现的机制,我也解释了相关的知识点.今天,我们借着这个机会,再来举一 ...

  9. SharePoint 2007 单列表模糊查询SPD定制

    应用场景:项目中总会遇到一些列表,存着是用户.项目等数据,而我们需要查询有哪些项目,这时候,就需要用到模糊查询了,而这样的查询,基本不需要跨列表,所以,也没必要配置复杂的搜索,用Designer(简称 ...

  10. LeetCode(26)-Binary Tree Level Order Traversal II

    题目: Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from ...