数据分析之Numpy
Numpy
numpy.array:将数组转换成向量
numpy.array([,,,])
转化成1维向量
numpy.array([[,,],[,,],[,,]])
转换成二维向量 vector = numpy.array([[1,2,3],[4,5,6],[8,9,10]])
vector.shape (对象.方法) 形状:三行三列 对象.dtype 数据类型 全为数字为整型,有一个float全为float,同理有一个字符串,类型为字符串,如[8,9,'10']
转换成向量取值
对象[1,4] 第二个样本的第四个,即2行4列对应的值
切片(同python)
(1) 对象.[0:3] 取前三个
(2) matrix[0,1] 取第一行第二个值 matrix[:,1] 取所有行中的第二列的值
判断
对象==6, 返回一个只有true和false的矩阵,对象中等于6的值为true,其余位置为false dtype为bool
注:可以将true当作索引值在取回值 6
类型转换
对象.astype(float) 括号中为要转换的类型,此例转换成float型
运算
对象.sum(asis=1) 1代表行 ,0代表列 此例为对每行进行求和
矩阵属性
a = numpy.arange(15).reshape(3,5) 释义:创造0到14一共15个数,形状为 3行5列 (a.shape) numpy.arange(10,30,5) 从10开始,30结束(不包含30),5为步长 结果[10,15,20,25]
对象.ndim 即a.ndim,对象是几维数组
对象.size 多少元素
矩阵操作
初始化1:numpy.zeros((3,4)) 3行4列 元素都为0 同理numpy.ones((3,4)) 3行4列 元素都为1 维度只有行和列,所以是2维。
numpy.ones((2,3,4)) 3维数组
初始化2:numpy.random.random((2,3)) 0-1之间的随机数,2行3列
初始化3:numpy.linspace(0,3.14,100) 在0-3.14之间平均取100个值
矩阵运算与线代相同 [ [1,2]
a=[[1,2] b=[[5,6] [3,4]
[3,4]] [7,8]] [5,6] [1,2,5,6]
numpy.vstack((a,b)) 行拼接 如: [7,8]] numpy.hstack((a,b)) 列拼接 [3,4,7,8]
numpy.hsplite(a,3) a为矩阵,隔4列切一刀,切成一个一个array numpy.vsplite(a,3)
复制
a=b和b=a.view() 前者完全相同,后者浅拷贝,但是对一个中的数值进行操作二者数值都改变,即啊,b共用一组数据
b=a.copy() 推荐使用,修改b数值,a中的数值不发生改变
对象.argmax(axis=0) 找出每一列中的最大值
numpy.tile(a,(4,2)) 如:传进来一个a=[10,20,30],行X4,列X2
sort 排序
数据分析之Numpy的更多相关文章
- 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...
- 数据分析入门——numpy类库基础知识
numpy类库是数据分析的利器,用于高性能的科学计算和数据分析.使用python进行数据分析,numpy这个类库是必须掌握的.numpy并没有提供强大的数据分析功能,而是它提供的ndarray数据结构 ...
- 数据分析 之 NumPy
目录 简单了解数据分析 Python数据分析三剑客(Numpy,Pandas,Matplotlib) 简单使用np.array() 使用np的routines函数创建数组 ndarray N维数组对象 ...
- 数据分析01 /numpy模块
数据分析01 /数据分析之numpy模块 目录 数据分析01 /数据分析之numpy模块 1. numpy简介 2. numpy的创建 3. numpy的方法 4. numpy的常用属性 5. num ...
- 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...
- 数据分析之Numpy基础:数组和适量计算
Numpy(Numerical Python)是高性能科学计算和数据分析的基础包. 1.Numpy的ndarray:一种多维数组对象 对于每个数组而言,都有shape和dtype这两个属性来获取数组的 ...
- Python数据分析之numpy学习
Python模块中的numpy,这是一个处理数组的强大模块,而该模块也是其他数据分析模块(如pandas和scipy)的核心. 接下面将从这5个方面来介绍numpy模块的内容: 1)数组的创建 2)有 ...
- 《利用python进行数据分析》NumPy基础:数组和矢量计算 学习笔记
一.有关NumPy (一)官方解释 NumPy is the fundamental package for scientific computing with Python. It contains ...
- Python数据分析(二): Numpy技巧 (1/4)
In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np
- Python数据分析(二): Numpy技巧 (2/4)
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性. 昨天晚上发了第一 ...
随机推荐
- 求解: Windows Phone XAML Controls 为什么是disable状态?
问题 : 我在做一个windows phone 的App,显示一个web 返回来的data,现在想用控件ListView 去绑定这个Data,但是 为何我的VS2012 中的 ToolBox 的XAM ...
- 数据结构系列(4)之 B 树
本文将主要讲述另一种树形结构,B 树:B 树是一种多路平衡查找树,但是可以将其理解为是由二叉查找树合并而来:它主要用于在不同存储介质之间查找数据的时候,减少 I/O 次数(因为一次读一个节点,可以读取 ...
- jquery快速入门(一)
一.jquery加载文档 jquery加载文档(也叫入口函数) $(document).ready(function(){ // 这里写 jQuery 代码... }); 简写方式: $(functi ...
- Spring Cloud Alibaba基础教程:Sentinel使用Nacos存储规则
通过上一篇<使用Sentinel实现接口限流>的介绍,相信大家对Sentinel已经有了初步的认识.在Spring Cloud Alibaba的整合封装之下,接口限流这件事情可以非常轻易的 ...
- 用VS2017进行移动开发(C#、VB.NET)——OfflineCameraButton控件,Smobiler移动开发
OfflineCameraButton控件 一. 样式一 我们要实现上图中的效果,需要如下的操作: 从工具栏上的“Smobiler Components”拖动一个OfflineCam ...
- C#工具:WPF生成图片验证码
1.使用ImageFormatConvertHelper using System; using System.Collections.Generic; using System.Drawing; u ...
- 从QA到工程能效团队
Engineering Productivity Productivity is our job; testing and quality are the job of everyone involv ...
- sql 修改、更新、替换 某个字段的部分内容(转载)
来源:https://blog.csdn.net/jiangnanqbey/article/details/81304834 1*.需求 将表(Ws_FormMain)的字段(order_Number ...
- IntelliJ IDEA下如何设置JSP模板
今天在学习Spring MVC知识时,发现自己所用的IntelliJ IDEA中自动生成的JSP文件不支持EL表达式的使用,所以就想导入新的JSP模板,方便以后使用.根据旧模板的提示,如下图 找到Se ...
- Spring中关于AOP的实践之Scheme方式实现通知
(刚开始写东西,不足之处还请批评指正) 关于AOP的通知编写方式有两种,使用Schema-baesd或者使用AspectJ方式,本篇主要介绍Schema-baesd方式的代码实现. (注:代码中没有添 ...