特殊计数序列——Catalan数
Catalan数
前10项
\(1,1,2,5,14,42,132,429,1430,4862\)
(注:从第\(0\)项起)
计算式
- \(C_n=\frac{1}{n+1}\dbinom{2n}{n}\)
- \(C_{n+1}=\sum_{i=0}^nC_iC_{n-i}\)
- \(C_n=\dbinom{2n}{n}-\dbinom{2n}{n-1}\)
- \(C_n=\frac{4n-2}{n+1}C_{n-1}\)
组合意义
1、由\(n\)个\(+1\)和\(n\)个\(-1\)构成的\(2n\)项序列中,满足\(\forall k\in[1,2n],\sum_{i=1}^ka_i\geq 0\)的序列数量
大家都知道结论:\(C_n=\frac{1}{n+1}\dbinom{2n}{n}\),在这里给出证明
考虑从相反的方面进行考虑,即用总序列数\(\dbinom{2n}{n}\)减去不合法的序列数
对于每一个不合法的序列,必定存在一个最小的\(k\)使得\(\sum_{i=1}^k a_i<0\),也就是有\(\sum_{i=0}^{k-1}a_i=0\)且\(a_k=-1\)
很明显\(k\)是奇数
考虑将前\(k\)项取相反数,那么该序列变成了一个含有\(n+1\)个\(+1\)和\(n-1\)个\(-1\)的序列,容易知道一个不合法的原序列只会对应一个新序列
同理,在新序列中一定会存在一个\(k\)使得\(\sum_{i=0}^ka_i=1\),此时再一次取前\(k\)项的相反数,又会得到一个不合法的原序列
因此不合法的序列和新序列是一一映射的关系,而新序列的总数也就是\(\dbinom{2n}{n-1}\)
于是最终答案就是\(\dbinom{2n}{n}-\dbinom{2n}{n-1}=\frac{1}{n+1}\dbinom{2n}{n}\)
由这一条组合意义可以引申出许多本质一样的组合意义
- 在网格图上从\((0,0)\)走到\((n,n)\),每次只走一个单位长度,不走回头路,且不穿过(可碰到)直线\(y=x\)的方案数。(向右:\(+1\),向上:\(-1\))
- \(2n\)个人排队买票,票价5角,有\(n\)个人持有1元硬币,另\(n\)个人持有\(5\)角硬币,求不使用额外的\(5\)角钱的排队方案(\(5\)角:\(+1\),\(1\)元:\(-1\))
2、凸\(n+1\)边形被其内部不相交的对角线划分成三角形区域的方案数
这是上面的第二个式子\(C_{n+1}=\sum_{i=0}^nC_iC_{n-i}\),我们有\(f_n=\sum_{i=2}^{n-1}f_if_{n-i-1}\),故\(f_n=C_{n+2}\)
类似的还有
- \(n\)个节点的不同的二叉树,考虑在中序遍历中根节点的位置即可
3、其它
本质上和第一点是相同的,关键是对偶数位置的转化
特殊计数序列——Catalan数的更多相关文章
- Catalan数,括号序列和栈
全是入门的一些东西.基本全是从别处抄的. 栈: 支持单端插入删除的线性容器. 也就是说,仅允许在其一端加入一个新元素或删除一个元素. 允许操作的一端也叫栈顶,不允许操作的一端也叫栈底. 数个箱子相叠就 ...
- [Catalan数]1086 栈、3112 二叉树计数、3134 Circle
1086 栈 2003年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 栈是计算机中 ...
- Catalan数 && 【NOIP2003】出栈序列统计
令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) ...
- 卡特兰数 Catalan数 ( ACM 数论 组合 )
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1) 编辑 收藏 引用 所属分类: ACM ( 数论 ...
- 【集训笔记】【大数模板】特殊的数 【Catalan数】【HDOJ1133【HDOJ1134【HDOJ1130
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3324 http://blog.csdn.net/xymscau/artic ...
- Catalan数应用整理
应用一: codevs 3112 二叉树计数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 一个有n个结点的二叉树总共有 ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- Catalan数
先看2个问题: 问题一: n个元素进栈(栈无穷大),进栈顺序为1,2,3,....n,那么有多少种出栈顺序? 先从简单的入手:n=1,当然只有1种:n=2,可以是1,2 也可以是2,1:那么有2种: ...
- catalan数及笔试面试里那些相关的问题(转)
一.catalan数由来和性质 1)由来 catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项 ...
随机推荐
- WPR003N变成尸体的后记
这是一个很悲哀的标题,尽管本来不想说还是打算写出来. 应小便的要求本文不加任何字体变化,不设置玄关来等大家破解,只是很自然的把悲剧和大家分享一下. 自上回2019 Valentine's Day 圣地 ...
- winform 跨线程访问问题
一.问题描述 进行winform 开发我们在进行数据交换时避免不了使用多线程或异步方法,这样操作也将避免不了跨线程对控件进行操作(赋值.修改属性). 下面通过一个测试说明一下问题 点击一个按钮异步对t ...
- .net 笔试面试总结(1)
趁着在放假时候,给大家总结一点笔试面试上的东西,也刚好为年后跳槽做一点小积累. 下面的参考解答只是帮助大家理解,不用背,面试题.笔试题千变万化,不要梦想着把题覆盖了,下面的题是供大家查漏补缺用的,真正 ...
- Cesium 绘制点、线、面和测距
本文基于ES6,采用React+Cesium的Webgis前端开发框架,目前threejs和cesium的结合正在研究中.此段代码采用原生javascript,可能过程中用到了es6的扁平化语法,如( ...
- arcgis api 4.x for js之基础地图篇
arcgis api3.x for js转向arcgis api4.x,我也是最近的3-4个月时间的事情,刚好公司有个webgis项目需要展示三维场景,项目选择arcgis api4.x.我纯碎记录一 ...
- swing Jframe 界面风格
用法:在jframe里面 UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel" ...
- UNIX DOMAIN SOCKET效率
关于UNIX DOMAIN SOCKET和普通udp socket的对比 在TX1(4核A57 1.7GHz)的板卡上进行测试,每个包大小设置为1024,全速收发,UDS的速度在90Mbps左右,UD ...
- js 学习之路9:运算符
1. 算数运算符 运算符 描述 例子 结果 + 加 x=y+2 x=7 - 减 x=y-2 x=3 * 乘 x=y*2 x=10 / 除 x=y/2 x=2.5 % 求余数 (保留整数) x=y%2 ...
- emacs单词首字母,单词,区域大小写转换
从光标开始,处理单词后半部分: 快捷键 说明 M-c (capitalize-word) 首字母改为大写 M-u (upcase-word) 全部改为大写 M-l (downcase-word) 全部 ...
- CentOS 7 MySql 解压版安装配置
下载 访问www.mysql.com 点击DOWNLOADS-->Community-->MySQL Community Server 选择要下载的版本,目前可选择的有:5.5.5.6.5 ...