bzoj 4870: [Shoi2017]组合数问题 [矩阵乘法优化dp]
4870: [Shoi2017]组合数问题
题意:求
\]
\(n \le 10^9, 0\le r < k \le 50\)
组合数推了一下,有一些有趣的性质但是并不好做
想到了从意义方面考虑,但是没有深入,去看了题解
n大k小,一副矩乘的样子
就是求“n个物品取模k余r个的方案数”
因为取的个数模k,变得很有意思,可以把组合数的递推式矩乘了...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, mo, k, r;
struct matrix {
int a[51][51];
matrix() {memset(a, 0, sizeof(a));}
int* operator [](int x) {return a[x];}
} f, a;
matrix operator *(matrix a, matrix b) {
int n = k;
matrix c;
for(int i=0; i<n; i++)
for(int k=0; k<n; k++) if(a[i][k])
for(int j=0; j<n; j++) if(b[k][j])
c[i][j] = (c[i][j] + (ll) a[i][k] * b[k][j] %mo) %mo;
return c;
}
matrix operator ^(matrix a, ll b) {
int n = k;
matrix c;
for(int i=0; i<n; i++) c[i][i] = 1;
for(; b; b>>=1, a=a*a) if(b&1) c=c*a;
return c;
}
int Pow(ll a, int b) {
ll ans=1;
for(; b; b>>=1, a=a*a%mo)
if(b&1) ans=ans*a%mo;
return ans;
}
int main() {
freopen("in", "r", stdin);
n=read(); mo=read(); k=read(); r=read();
if(k == 1) {printf("%d", Pow(2, n)); return 0;}
for(int i=0; i<k; i++) f[i][i] = 1, f[(i+1)%k][i] = 1;
f = f ^ ((ll) n * k);
a[0][0] = 1;
a = f * a;
printf("%d\n", a[r][0]);
}
bzoj 4870: [Shoi2017]组合数问题 [矩阵乘法优化dp]的更多相关文章
- BZOJ 4870: [Shoi2017]组合数问题 矩阵乘法_递推
Code: #include <cstdio> #include <cstring> #include <algorithm> #define setIO(s) f ...
- 形态形成场(矩阵乘法优化dp)
形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】
题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...
- BZOJ 4870 [Shoi2017]组合数问题 ——动态规划 矩阵乘法
注意到$r<k$ 别问我为什么要强调. 考场上前30分水水. 然后写阶乘的时候大力$n\log {n}$预处理 本机跑的挺快的,然后稳稳的T掉了. 然后就是简单的矩阵乘法了. #include ...
- 矩阵乘法优化DP复习
前言 最近做毒瘤做多了--联赛难度的东西也该复习复习了. Warning:本文较长,难度分界线在"中场休息"部分,如果只想看普及难度的可以从第五部分直接到注意事项qwq 文中用(比 ...
- 矩阵乘法优化DP
本文讲一下一些基本的矩阵优化DP的方法技巧. 定义三个矩阵A,B,C,其中行和列分别为$m\times n,n \times p,m\times p$,(其中行是从上往下数的,列是从左往右数的) $C ...
- 51nod 1583 犯罪计划——矩阵乘法优化dp
文泽想在埃及做案n次,并且想在最后不用得到惩罚.案件的被分成几种类型.比如说,案件A,当案件A被重复犯两次时,案件A将被认为不是犯罪案件,因此犯案人不用得到惩罚.也就是说,案件A被犯偶数次时,犯案人将 ...
- 【bzoj2476】战场的数目 矩阵乘法优化dp
题目描述 (战场定义为对于最高的一列向两边都严格不增的“用积木搭成”的图形) 输入 输入文件最多包含25组测试数据,每个数据仅包含一行,有一个整数p(1<=p<=109),表示战场的图形周 ...
随机推荐
- 独立成分分析(ICA)的模拟实验(R语言)
本笔记是ESL14.7节图14.42的模拟过程.第一部分将以ProDenICA法为例试图介绍ICA的整个计算过程:第二部分将比较ProDenICA.FastICA以及KernelICA这种方法,试图重 ...
- [国嵌攻略][119][Linux中断处理程序设计]
裸机中断: 1.中断统一入口. 2.注册中断处理程序. 3.根据中断源编号,调用中断处理程序. Linux中断 1.在entry-armv.S中的_irq_svc是中断统一入口. 2.获取产生中断源的 ...
- ABB安全区域(全局区域)的指令解析
VAR wztemporary wzone;//VAR:变量 //wztemporary:全局区域数据类型(wztemporary临时全局区域数据.wzstationary固定式全局区域)wzone: ...
- 算法-java代码实现基数排序
基数排序 第11节 基数排序练习题 对于一个int数组,请编写一个基数排序算法,对数组元素排序. 给定一个int数组A及数组的大小n,请返回排序后的数组.保证元素均小于等于2000. 测试样例: [1 ...
- git回退操作
情况一:checkout 当你修改了某个文件,未提交暂存区,回退本次修改 git checkout -- file 情况三:reset 当你的代码,已提交到暂存区,还未提交到远程仓库 git log ...
- OKMX6Q LTIB编译
因为在16.04上编译有许多解决不了的错误,最后还是在飞凌的12.04虚拟机上编译的. 按照手册<OKMX6X-S2-LTIB编译手册-V1.1-2016-08-18>进行到第8步时,出现 ...
- HTML <a href >标签的target属性
规定在何处打开链接文档. _blank 在新窗口中打开被链接文档 _parent 在父框架集中打开被链接文档 _self 默认.在相同的框架中打开被链接文档 _top 在整 ...
- Lucene.net(4.8.0) 学习问题记录四: IndexWriter 索引的优化以及思考
前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...
- docker 安装 msyql
**************************************************************************************************** ...
- margin 和 padding 的本质区别
问题? 如何弄清 margin 和 padding之间的区别? 那,答案呢? margin 边界, padding 填充 假如有一个盒子,padding就相当于盒子的厚度,盒子大小固定,通过修改pad ...