D 区间求和

题意:求

\[\sum_{k=1}^n \sum_{l=1}^{n-k+1} \sum_{r=l+k-1}^n 区间前k大值和
\]


比赛时因为被B卡了没有深入想这道题 结果B没做出来后面的题也没做


化一下式子

\[\begin{align}
&= \sum_{l=1}^n \sum_{r=l}^n \sum_{k=l}^r a_k \cdot (1+\sum_{i=l}^r [a_i < a_k]) \\
&考虑一个数的贡献 \\
&= \sum_{k=1}^n \sum_{i=k+1}^n a_k \cdot [a_i < a_k] \cdot k \cdot (n-i+1)\\
&+ \sum_{k=1}^n \sum_{i=1}^{k-1} a_k \cdot [a_i < a_k] \cdot i \cdot (n-k+1) \\
&+ \sum_{k=1}^n a_k \cdot k \cdot (n-k+1)
\end{align}
\]

简单的二维偏序问题,树状数组搞一下就行了


注意数相等的情况!第二个二维偏序把相等认为是大于就行了


一定要考虑这种做题方法:

把一些最大值、最小值、k大值之类的关系用求和式子表示出来进行化简

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 1e6+5, mo = 1e9+7;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
} int n, a[N], mp[N]; ll A, B, C; ll c[N];
inline void mod(ll &x) {if(x >= mo) x -= mo; else if(x < 0) x += mo;}
inline void add(int p, ll v) {for(; p<=n; p+=p&-p) mod(c[p] += v);}
inline ll sum(int p) {ll ans=0; for(; p; p-=p&-p) mod(ans += c[p]); return ans;}
void solve() {
ll ans = 0;
for(int k=n; k>=1; k--) mod(ans += (ll) mp[a[k]] * k %mo * sum(a[k]) %mo), add(a[k], (n-k+1));
memset(c, 0, sizeof(c));
for(int k=1; k<=n; k++) mod(ans += (ll) mp[a[k]] * (n-k+1) %mo * sum(a[k]-1) %mo), add(a[k], k);
for(int k=1; k<=n; k++) mod(ans += (ll) mp[a[k]] * k %mo * (n-k+1) %mo);
printf("%lld\n", (ans + mo) %mo);
}
int main() {
freopen("in", "r", stdin);
n=read(); a[1]=read(); A=read(); B=read(); C=read();
for(int i=2; i<=n; i++) a[i] = (a[i-1] * A + B) % C;
for(int i=1; i<=n; i++) mp[i] = a[i];
sort(mp+1, mp+1+n); mp[0] = unique(mp+1, mp+1+n) - mp - 1;
for(int i=1; i<=n; i++) a[i] = lower_bound(mp+1, mp+1+mp[0], a[i]) - mp;
solve();
}

D 区间求和 [数学 树状数组]的更多相关文章

  1. ACM学习历程—51NOD 1685 第K大区间2(二分 && 树状数组 && 中位数)

    http://www.51nod.com/contest/problem.html#!problemId=1685 这是这次BSG白山极客挑战赛的E题. 这题可以二分答案t. 关键在于,对于一个t,如 ...

  2. hdu 1166 敌兵布阵——(区间和)树状数组/线段树

    pid=1166">here:http://acm.hdu.edu.cn/showproblem.php?pid=1166 Input 第一行一个整数T.表示有T组数据. 每组数据第一 ...

  3. hdu-5700 区间交(二分+树状数组)

    题目链接: 区间交 Problem Description   小A有一个含有n个非负整数的数列与mm个区间.每个区间可以表示为l​i​​,r​i​​. 它想选择其中k个区间, 使得这些区间的交的那些 ...

  4. FZU2224 An exciting GCD problem 区间gcd预处理+树状数组

    分析:(别人写的) 对于所有(l, r)区间,固定右区间,所有(li, r)一共最多只会有log个不同的gcd值, 可以nlogn预处理出所有不同的gcd区间,这样区间是nlogn个,然后对于询问离线 ...

  5. 牛客网暑期ACM多校训练营(第一场):J-Different Integers(分开区间不同数+树状数组)

    链接:J-Different Integers 题意:给出序列a1, a2, ..., an和区间(l1, r1), (l2, r2), ..., (lq, rq),对每个区间求集合{a1, a2, ...

  6. SPOJ - DQUERY(区间不同数+树状数组)

    链接:SPOJ - DQUERY 题意:求给定区间不同数的个数(不更新). 题解:离线+树状数组. 对所求的所有区间(l, r)根据r从小到大排序.从1-n依次遍历序列数组,在树状数组中不断更新a[i ...

  7. [CSP-S模拟测试]:天才绅士少女助手克里斯蒂娜(数学+树状数组)

    题目描述 红莉栖想要弄清楚楼下天王寺大叔的显像管电视对“电话微波炉(暂定)”的影响. 选取显像管的任意一个平面,一开始平面内有个$n$电子,初始速度分别为$v_i$,定义飘升系数为$$\sum \li ...

  8. [CSP-S模拟测试]:Equation(数学+树状数组)

    题目描述 有一棵$n$个点的以$1$为根的树,以及$n$个整数变量$x_i$.树上$i$的父亲是$f_i$,每条边$(i,f_i)$有一个权值$w_i$,表示一个方程$x_i+x_{f_i}=w_i$ ...

  9. 【XSY2714】大佬的难题 数学 树状数组

    题目描述 给你三个排列\(A,B,C\),求 \[ \sum_{1\leq x,y\leq n}[a_x<a_y][b_x<b_y][c_x<c_y] \] \(n\leq 2\ti ...

随机推荐

  1. HDU1016(素数环)

    Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...

  2. python笔记二(mysql数据库操作)

    python2.x使用MySQLdb python3.x使用pymysql代替MySQLdb 不过我使用的是python3.5,MySQLdb还是可以在python3.5使用的. #!/usr/bin ...

  3. CLR 简介

    (一)CLR介绍 CLR是一个可以由多编程语言使用的运行时,CLR的核心功能:内存管理,程序集加载,安全性,异常处理,线程同步等等.可以被很多属于微软系列的开发语言使用. 事实上,在运行时,CLR根本 ...

  4. jquery 和 mui 上拉加载

    jquery: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <m ...

  5. windows下pip安装python模块时报错

    windows下pip安装python模块时报错总结  装载于:https://www.cnblogs.com/maxaimee/p/6515165.html 前言: 这几天把python版本升级后, ...

  6. PHP和Python如何选择?或许可以考虑这三个问题

    撤稿纠错 文/黄小天.李亚洲 (选自Hackernoon 机器之心编译) 2017 年可谓是网页应用与 API 之年,开发者不用每次重新发明轮子,而是利用脚手架和第三方库就能确保项目在几天内实时部署. ...

  7. get最简单直接粗爆git与github教程

    Git是分布式版本控制系统(可以理解为文件管理拓展工具) github一个在线文件托管系统(可以理解为一个在线云盘) 准备工作,在git官网下载git软件件,安装git软件,以windows.为例,下 ...

  8. 1.MAVEN项目的创建与问题的解决

    一.创建一个maven-webapp.(环境:mac和15版本的IDEA) 二.next--->填写groupId(公司单位的名字,你组织的名字)和ArtifactID(有关tomcat,以后用 ...

  9. P2045 方格取数加强版

    P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...

  10. visual studio 中无法删除项目或者文件

    vs 2012添加新项目或者类库后,里边的class文件,我不想要,就把它删除.但是删除的时候,报如下图的错误,我删除新建的项目或类库的时候,也报类似的错误,怎么解决? window系统是新安装的.也 ...