410. [NOI2009] 植物大战僵尸

★★★   输入文件:pvz.in   输出文件:pvz.out   简单对比
时间限制:2 s   内存限制:512 MB

【问题描述】

Plants vs. Zombies(PVZ)是最近十分风靡的一款小游戏。Plants(植物)和Zombies(僵尸)是游戏的主角,其中Plants防守,而Zombies进攻。该款游戏包含多种不同的挑战系列,比如Protect Your Brain、Bowling等等。其中最为经典的,莫过于玩家通过控制Plants来防守Zombies的进攻,或者相反地由玩家通过控制Zombies对Plants发起进攻。

现在,我们将要考虑的问题是游戏中Zombies对Plants的进攻,请注意,本题中规则与实际游戏有所不同。游戏中有两种角色,Plants和Zombies,每个Plant有一个攻击位置集合,它可以对这些位置进行保护;而Zombie进攻植物的方式是走到植物所在的位置上并将其吃掉。

游戏的地图可以抽象为一个N行M列的矩阵,行从上到下用0到N–1编号,列从左到右用0到M–1编号;在地图的每个位置上都放有一个Plant,为简单起见,我们把位于第r行第c列的植物记为Pr,c。

Plants分很多种,有攻击类、防守类和经济类等等。为了简单的描述每个Plant,定义Score和Attack如下:

Score[Pr,c]

Zombie击溃植物Pr,c可获得的能源。若Score[Pr,c]为非负整数,则表示击溃植物Pr,c可获得能源Score[Pr,c],若为负数表示击溃Pr,c需要付出能源-Score[Pr,c]。

Attack[Pr,c]

植物Pr,c能够对Zombie进行攻击的位置集合。

Zombies必须从地图的右侧进入,且只能沿着水平方向进行移动。Zombies攻击植物的唯一方式就是走到该植物所在的位置并将植物吃掉。因此Zombies的进攻总是从地图的右侧开始。也就是说,对于第r行的进攻,Zombies必须首先攻击Pr,M-1;若需要对Pr,c(0≤c<M-1)攻击,必须将Pr,M-1,Pr,M-2…Pr,c+1先击溃,并移动到位置(r,c)才可进行攻击。

在本题的设定中,Plants的攻击力是无穷大的,一旦Zombie进入某个Plant的攻击位置,该Zombie会被瞬间消灭,而该Zombie没有时间进行任何攻击操作。因此,即便Zombie进入了一个Plant所在的位置,但该位置属于其他植物的攻击位置集合,则Zombie会被瞬间消灭而所在位置的植物则安然无恙(在我们的设定中,Plant的攻击位置不包含自身所在位置,否则你就不可能击溃它了)。

Zombies的目标是对Plants的阵地发起进攻并获得最大的能源收入。每一次,你可以选择一个可进攻的植物进行攻击。本题的目标为,制定一套Zombies的进攻方案,选择进攻哪些植物以及进攻的顺序,从而获得最大的能源收入。

【输入文件】

输入文件pvz.in的第一行包含两个整数N,M,分别表示地图的行数和列数。

接下来N×M行描述每个位置上植物的信息。第r×M+c+ 1行按照如下格式给出植物Pr,c的信息:第一个整数为Score[Pr,c],第二个整数为集合Attack[Pr,c]中的位置个数w,接下来w个位置信息(r’,c’),表示Pr,c可以攻击位置第r’行第c’列。

【输出文件】

输出文件pvz.out仅包含一个整数,表示可以获得的最大能源收入。注意,你也可以选择不进行任何攻击,这样能源收入为0。

【输入样例】

3 2

10 0

20 0

-10 0

-5 1 0 0

100 1 2 1

100 0

【输出样例】

25

【样例说明】

在样例中,植物P1,1可以攻击位置(0,0),P2, 0可以攻击位置(2,1)。

一个方案为,首先进攻P1,1,P0,1,此时可以攻击P0,0。共得到能源收益为(-5)+20+10 = 25。注意,位置(2,1)被植物P2,0保护,所以无法攻击第2行中的任何植物。

【大致数据规模】

约20%的数据满足1 ≤N,M≤ 5;

约40%的数据满足1 ≤N,M≤ 10;

约100%的数据满足1 ≤N≤ 20,1 ≤M≤ 30,-10000 ≤Score≤ 10000

题解:

  就是一个最大权闭合子图的模型。
  首先由源点S向所有正权点连一条容量为其权值的边,有所有负权点向汇点T连一条容量为-(权值)的边,然后由被保护点向保护点连一条∞的边。这样一来,求最小割S集就是所攻击到的点,用(sum(总正权点值)-最小割)就是答案。

  注意:有可能出现“无敌节点”——在构造的网络中出现环,此时环内所有节点都不可能取到,同时被环内节点保护的所有节点也不可取。这是一个大麻烦。

  我的解决方案:被保护点向保护点连边,tarjan扫一遍强连通分量。所有的环内元素直接与T连一条∞的边。该元素不再连边。这样就避免了“无敌节点”的计算。同时保证单向(不成环)保护对答案贡献的正确性。

#include<cstdio>
#include<iostream>
#define FRE(name) freopen(#name".in","r",stdin);freopen(#name".out","w",stdout);
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=*,M=;
const int inf=0x3f3f3f3f;
struct edge{int v,cap,next;}e[N*N*];int tot=;
struct Edge{int v,next;}e2[N*N];
int n,m,S,T,ans,head[N],dis[N],q[N*N],id[M][M],c[M][M];
int dfs_cnt,scc_cnt,top,tot2,head2[N],dfn[N],low[N],sccno[N],num[N],stack[N*];
inline void add(int x,int y){
e2[++tot2].v=y;e2[tot2].next=head2[x];head2[x]=tot2;
}
inline void add(int x,int y,int z){
e[++tot].v=y;e[tot].cap=z;e[tot].next=head[x];head[x]=tot;
e[++tot].v=x;e[tot].cap=;e[tot].next=head[y];head[y]=tot;
}
void tarjan(int u){
dfn[u]=low[u]=++dfs_cnt;
stack[++top]=u;
for(int i=head2[u];i;i=e2[i].next){
int v=e2[i].v;
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],dfn[v]);
}
else if(!sccno[v]){
low[u]=min(low[u],low[v]);
}
}
if(dfn[u]==low[u]){
scc_cnt++;
for(int x;;){
x=stack[top--];
sccno[x]=scc_cnt;
num[scc_cnt]++;
if(x==u) break;
}
}
}
inline void init(){
n=read();m=read();
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
id[i][j]=(i-)*m+j;
}
}
for(int i=,w,x,y;i<=n;i++){
for(int j=;j<=m;j++){
c[i][j]=read();w=read();
while(w--){
x=read()+;y=read()+;
add(id[x][y],id[i][j]);
}
if(j!=m) add(id[i][j],id[i][j+]);
}
}
}
inline void mapping(){
S=,T=n*m+;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(num[sccno[id[i][j]]]>){add(id[i][j],T,inf);continue;}
if(c[i][j]>) add(S,id[i][j],c[i][j]),ans+=c[i][j];
if(c[i][j]<) add(id[i][j],T,-c[i][j]);
for(int k=head2[id[i][j]];k;k=e2[k].next){
int v=e2[k].v;
add(id[i][j],v,inf);
}
}
}
}
inline bool bfs(){
for(int i=S;i<=T;i++) dis[i]=-;
int h=,t=;dis[S]=;q[t]=S;
while(h!=t){
int x=q[++h];
for(int i=head[x];i;i=e[i].next){
if(dis[e[i].v]==-&&e[i].cap){
dis[e[i].v]=dis[x]+;
if(e[i].v==T) return ;
q[++t]=e[i].v;
}
}
}
return ;
}
int dfs(int x,int f){
if(x==T) return f;
int used=,t;
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]==dis[x]+){
t=dfs(e[i].v,min(e[i].cap,f));
e[i].cap-=t;e[i^].cap+=t;
used+=t;f-=t;
if(!f) return used;
}
}
if(!used) dis[x]=-;
return used;
}
inline void dinic(){
while(bfs()) ans-=dfs(S,inf);
printf("%d",ans);
}
int main(){
FRE(pvz);
init();
for(int i=;i<=n*m;i++) if(!dfn[i]) tarjan(i);
mapping();
dinic();
return ;
}

COGS410. [NOI2009] 植物大战僵尸的更多相关文章

  1. 图论(网络流):COGS 410. [NOI2009] 植物大战僵尸

    410. [NOI2009] 植物大战僵尸 ★★★   输入文件:pvz.in   输出文件:pvz.out   简单对比时间限制:2 s   内存限制:512 MB [问题描述] Plants vs ...

  2. P2805 [NOI2009]植物大战僵尸

    题目地址:P2805 [NOI2009]植物大战僵尸 最大权闭合子图 若有向图 \(G\) 的子图 \(V\) 满足: \(V\) 中顶点的所有出边均指向 \(V\) 内部的顶点,则称 \(V\) 是 ...

  3. BZOJ 1565: [NOI2009]植物大战僵尸

    1565: [NOI2009]植物大战僵尸 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2317  Solved: 1071[Submit][Stat ...

  4. 【刷题】BZOJ 1565 [NOI2009]植物大战僵尸

    Description Plants vs. Zombies(PVZ)是最近十分风靡的一款小游戏.Plants(植物)和Zombies(僵尸)是游戏的主角,其中Plants防守,而Zombies进攻. ...

  5. 【bzoj1565】[NOI2009]植物大战僵尸

    1565: [NOI2009]植物大战僵尸 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2164  Solved: 1001[Submit][Stat ...

  6. 【最大权闭合子图 tarjan】bzoj1565: [NOI2009]植物大战僵尸

    dinic+tarjan板子练手题 Description Plants vs. Zombies(PVZ)是最近十分风靡的一款小游戏.Plants(植物)和Zombies(僵尸)是游戏的主角,其 中P ...

  7. BZOJ1565: [NOI2009]植物大战僵尸

    Description Input Output 仅包含一个整数,表示可以获得的最大能源收入.注意,你也可以选择不进行任何攻击,这样能源收入为0. Sample Input 3 2 10 0 20 0 ...

  8. 【bzoj1565】 NOI2009—植物大战僵尸

    http://www.lydsy.com/JudgeOnline/problem.php?id=1565 (题目链接) 题意 给出$n*m$的棋盘,僵尸攻击每个格子可以获得$v$的分数,每个格子又会保 ...

  9. luogu2805 [NOI2009]植物大战僵尸

    想象一下,要搞掉一个植物,必须先搞掉另一些植物--我们可以发现这是一个最大权闭合子图的问题. 最大权闭合子图的话,太空飞行计划问题是一个入门题,可以一看. 然而我们手玩一下样例就会惊恐地发现,保护关系 ...

随机推荐

  1. hdu 2674(余数性质)

    N!Again Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  2. Codeforces Round #449 (Div. 2) B. Chtholly's request【偶数位回文数】

    B. Chtholly's request time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  3. Codeforces 371A K-Periodic Array(模拟)

    题目链接 K-Periodic Array 简单题,直接模拟即可. #include <bits/stdc++.h> using namespace std; #define REP(i, ...

  4. usaco-Money Systems

    题意: 给出几种硬币,求可用这几种硬币组合出价值为n的方案数.分析: 设dp[i]表示组合出价值i的方案数,则,dp[i]=∑dp[i-val[j]]. #include <iostream&g ...

  5. Linux下通过端口号查询占用的进程,并知道其所在的位置

    比如要查询2181端口. 1.查询端口占用的进程ID netstat -anp | grep 2181 tcp6 0 0 :::2181 :::* LISTEN 10997/java 2181为端口号 ...

  6. 【AOP】Spring AOP基础 + 实践 完整记录

    Spring AOP的基础概念 ============================================================= AOP(Aspect-Oriented Pr ...

  7. 解决unknown import path "golang.org/x/sys/unix": unrecognized import path "golang.org/x/sys"

    问题描述 当我们使用 go get.go install.go mod 等命令时,会自动下载相应的包或依赖包.但由于众所周知的原因,类似于 golang.org/x/... 的包会出现下载失败的情况. ...

  8. {dede:sql}标签的用法

    sql标签可以称得上是个万能标签了,查询数据库将其输出,这里介绍一些关于这个标签的用法: 1.用来输出统计内容,这个是不错的,举个例子,我们来统计下总共发了多少的文章,思路就是输出dede_addon ...

  9. 列表pagesize修改每页显示的数量失效

    ◇系统错误修复工具 >> 检测微表正确性 原因是删除一些数据导致记录与实际数据不符 转自:http://bbs.dedecms.com/269491.html

  10. Poj2826 An Easy Problem

    呵呵哒.WA了无数次,一开始想的办法最终发现都有缺陷.首先需要知道: 1)线段不相交,一定面积为0 2)有一条线段与X轴平行,面积一定为0 3)线段相交,但是能接水的三角形上面线段把下面的线段完全覆盖 ...