POJ:2955-Brackets(经典:括号匹配)
传送门:http://poj.org/problem?id=2955
Brackets
Time Limit: 1000MS Memory Limit: 65536K
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
- 这是一个区间dp的经典例题,刚开始的时候还以为可以模拟做,但是事实就是这是不行的,只是自己想的太简单,括号的匹配有很多种。
- 区间dp执行的时候,里面先是一段区间一段区间的跑,然后枚举这个区间里面每一种匹配情况,由于在选择区间的时候是从小开始选择,所以在枚举每一种匹配情况的时候都是从前面得到的答案来转移的,这也体现了动态规划,从子问题转移。只不过区间dp里面是从一个小的区间慢慢转移到整个区间。但是怎么处理区间里面的状态要看当前问题的特点。
#include<stdio.h>
#include<string.h>
using namespace std;
const int maxn = 110;
char s[maxn];
int dp[maxn][maxn];
bool checke(int S,int E)
{
if(s[S] == '(' && s[E] == ')')
return true;
if(s[S] == '[' && s[E] == ']')
return true;
return false;
}
int main()
{
while(scanf("%s",s))
{
if(strcmp(s,"end") == 0)
break;
memset(dp,0,sizeof(dp));
int len = strlen(s);
for(int i=1;i<len;i++)
for(int j=0,k=i;k<len;k++,j++)
{
if(checke(j,k))
dp[j][k] = dp[j+1][k-1] + 2;
for(int z=j;z<k;z++)
if(dp[j][z] + dp[z+1][k] > dp[j][k])
dp[j][k] = dp[j][z] + dp[z+1][k];
}
printf("%d\n",dp[0][len-1]);
}
return 0;
}
POJ:2955-Brackets(经典:括号匹配)的更多相关文章
- POJ 2955 Brackets --最大括号匹配,区间DP经典题
题意:给一段左右小.中括号串,求出这一串中最多有多少匹配的括号. 解法:此问题具有最优子结构,dp[i][j]表示i~j中最多匹配的括号,显然如果i,j是匹配的,那么dp[i][j] = dp[i+1 ...
- POJ 1141 Brackets Sequence(括号匹配二)
题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...
- POJ 2955 Brackets(括号匹配一)
题目链接:http://poj.org/problem?id=2955 题目大意:给你一串字符串,求最大的括号匹配数. 解题思路: 设dp[i][j]是[i,j]的最大括号匹配对数. 则得到状态转移方 ...
- poj 2955 Brackets (区间dp 括号匹配)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- poj 2955 Brackets 括号匹配 区间dp
题意:最多有多少括号匹配 思路:区间dp,模板dp,区间合并. 对于a[j]来说: 刚開始的时候,转移方程为dp[i][j]=max(dp[i][j-1],dp[i][k-1]+dp[k][j-1]+ ...
- poj 2955 Brackets
题目链接:http://poj.org/problem?id=2955 思路:括号匹配问题,求出所给序列中最长的可以匹配的长度(中间可以存在不匹配的)例如[(])]有[()]符合条件,长度为4 dp[ ...
- CSUOJ 1271 Brackets Sequence 括号匹配
Description ]. Output For each test case, print how many places there are, into which you insert a ' ...
- Poj 2955 brackets(区间dp)
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7795 Accepted: 4136 Descript ...
- POJ 2955 Brackets(区间DP)题解
题意:问最多有几个括号匹配 思路:用dp[i][j]表示i到j最多匹配,若i和j构成匹配,那么dp[i][j] = dp[i + 1][j - 1] + 2,剩下情况dp[i][j] = max(dp ...
- poj 2955 Brackets dp简单题
//poj 2955 //sep9 #include <iostream> using namespace std; char s[128]; int dp[128][128]; int ...
随机推荐
- IDEA2017 配置Maven
配置本地仓库位置 配置一下Maven的本地仓库路径,首先找到解压Maven的目录,找到conf -> settings.xml这个配置文件打开. 打开settings.xml 配置文件,选一个本 ...
- markdown-Macdown
#标题 [页面锚点](#name) => <a name="name"></a>文字 **加粗**(Command-B) *斜体*(Comma ...
- Kendo MVVM 数据绑定(十一) Value
Kendo MVVM 数据绑定(十一) Value Value 绑定可以把 ViewModel 的某个属性绑定到 DOM 元素或某个 UI 组件的 Value 属性.当用户修改 DOM 元素或 UI ...
- 使用jdbc完成curd操作
jdbc: java操作数据库,jdbc是oracle公司指定的一套规范(一套接口) 驱动:jdbc的实现类,由数据库厂商提供 我们可以通过一套规范操作不同的数据库(多态) jdbc作用: 连接数据库 ...
- [拾零]C/C++_代码复用的实现_静态链接库_动态链接库_使用.def导出
1 静态链接库 1.1 创建静态链接库: 1.在VC6中创建项目:Win32 Static Library 2.在项目中创建两个文件:xxx.h 和 xxx.cpp 3.编译 1.2 使用静态链接库 ...
- 理解Postgres性能
目录[-] 理解Postgres性能 理解缓存和缓存命中率 理解索引用途 Heroku Dashboard示例 索引缓存命中率 理解Postgres性能 对于很多应用程序开发人员来说数据库就是一个黑盒 ...
- LeetCode Min Stack 最小值栈
题意:实现栈的四个基本功能.要求:在get最小元素值时,复杂度O(1). 思路:链表直接实现.最快竟然还要61ms,醉了. class MinStack { public: MinStack(){ h ...
- EF生成的实体映射含义
如图: 组合效果: LEFT JOIN 效果: this.HasOptional(t => t.子表) .WithMany(t => t.主表) .HasForeignKey(d => ...
- HDU 5489 Removed Interval 2015 ACM/ICPC Asia Regional Hefei Online (LIS变形)
定义f[i]表示以i为开头往后的最长上升子序列,d[i]表示以i为结尾的最长上升子序列. 先nlogn算出f[i], 从i-L开始枚举f[i],表示假设i在最终的LIS中,往[0,i-L)里找到满足a ...
- 10.1 plan
1951 [Sdoi2010]古代猪文 Sdoi2010 Contest2 807 1928 1566 [NOI2009]管道取珠 806 1429 2756 [S ...