虽然都写了,过也过了,还是觉得杜教筛的复杂度好玄学

设f*g=h,∑f=S,

则∑h=∑f(i)S(n/i下取整)

把i=1时单独拿出来,得到

S(n)=(∑h-∑2->n f(i)S(n/i下取整)

右边的部分可以分块解决

递归一下,≤一个阈值的暴力表出来

注意阈值以上的也要记忆化

复杂度不会算,但从本题来看过1e10没问题

 #include <bits/stdc++.h>
#define MAX 5000000
using namespace std;
long long a,b,N;
long long miu[MAX+],p[MAX],ans[MAX];
bool bo[MAX+];
long long work(long long n)
{
if(n<=MAX) return miu[n];
if(ans[N/n]) return ans[N/n];
long long ret=;
for(long long j=;j<=n;)
{
long long nex=n/(n/j);
ret-=(nex-j+)*work(n/j);
j=nex+;
}
ans[N/n]=ret;
return ret;
}
int main()
{
int sum=;miu[]=;
for(int i=;i<=MAX;i++)
{
if(!bo[i])
p[++sum]=i,miu[i]=-;
for(int j=;j<=sum;j++)
{
if((long long)p[j]*i<=MAX)
{
bo[p[j]*i]=;
miu[i*p[j]]=-miu[i]*(bool)(i%p[j]);
}
else break;
if(i%p[j]==) break;
}
}
for(int i=;i<=MAX;i++)
miu[i]+=miu[i-];
scanf("%lld%lld",&a,&b);
N=b;
long long ans1=work(b);
for(int i=;i<=MAX;i++)
ans[i]=;
N=a-;
long long ans2=work(a-);
printf("%lld\n",ans1-ans2);
return ;
}

51nod1244 莫比乌斯函数之和 杜教筛的更多相关文章

  1. 51 NOD 1244 莫比乌斯函数之和(杜教筛)

    1244 莫比乌斯函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens) ...

  2. 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...

  3. 51Nod.1244.莫比乌斯函数之和(杜教筛)

    题目链接 map: //杜教筛 #include<map> #include<cstdio> typedef long long LL; const int N=5e6; in ...

  4. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  5. 【51nod】1239 欧拉函数之和 杜教筛

    [题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...

  6. 51nod1244 欧拉函数之和 杜教筛

    和上一题差不多,一个是μ*I=e,一个是φ*I=Id 稍改就得到了这题的代码 (我会告诉你我一开始逆元算错了吗) #include <bits/stdc++.h> #define MAX ...

  7. 我也不知道什么是"莫比乌斯反演"和"杜教筛"

    我也不知道什么是"莫比乌斯反演"和"杜教筛" Part0 最近一直在搞这些东西 做了将近超过20道题目吧 也算是有感而发 写点东西记录一下自己的感受 如果您真的 ...

  8. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  9. 【BZOJ4652】【NOI2016】循环之美(莫比乌斯反演,杜教筛)

    [BZOJ4652]循环之美(莫比乌斯反演,杜教筛) 题解 到底在求什么呢... 首先不管他\(K\)进制的问题啦,真是烦死啦 所以,相当于有一个分数\(\frac{i}{j}\) 因为值要不相等 所 ...

随机推荐

  1. OP趋势系统

    经过3年多时间的摸索,经历过熊市牛市的历练,终于完成坚持已久的OP趋势系统的实践,接下来,我将在股灾后,每天都分享OP趋势系统的信号,可以很负责任的说,经过10年历史数据的测试,加上3年的实盘,更加坚 ...

  2. BZOJ_2802_[Poi2012]Warehouse Store_堆+贪心

    BZOJ_2802_[Poi2012]Warehouse Store_堆+贪心 Description 有一家专卖一种商品的店,考虑连续的n天. 第i天上午会进货Ai件商品,中午的时候会有顾客需要购买 ...

  3. 【C++基础】重载,覆盖,隐藏

    函数签名的概念 函数签名主要包括1.函数名:2.参数列表(参数的个数.数据类型和顺序):但是注意,C++官方定义中函数签名不包括返回值!! 1.重载 函数重载是指在同一作用域内,可以有一组具有相同函数 ...

  4. Linux MySQL5.5的安装

    1.安装cmake [root@server1 src]# cd /opt/ipnms/src[root@server1 src]# tar zxvf cmake-2.8.4.tar.gz[root@ ...

  5. 对于makefile传递参数的一些问题

    makefile变量说明: 1.总控Makefile中使用“-e”参数覆盖下一层Makefile中的变量. 2.父级Makefile向子级Makefile传送变量方式:export <varia ...

  6. POJ3177(无向图变双连通图)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11514   Accepted: 4946 ...

  7. 【opencv学习笔记七】访问图像中的像素与图像亮度对比度调整

    今天我们来看一下如何访问图像的像素,以及如何改变图像的亮度与对比度. 在之前我们先来看一下图像矩阵数据的排列方式.我们以一个简单的矩阵来说明: 对单通道图像排列如下: 对于双通道图像排列如下: 那么对 ...

  8. oracle针对中文排序

    在oracle 9i之前,对中文的排序,是默认按2进制编码来进行排序的. 9i时增加了几种新的选择: 按中文拼音进行排序:SCHINESE_PINYIN_M 按中文部首进行排序:SCHINESE_RA ...

  9. wpf窗口禁止最大化但允许调整大小

    wpf中窗口禁止最大化可以通过属性ResizeMode来设置,但是ResizeMode有一个问题就是如果ResizeMode设置为NoResize的话,是可以禁止最大化的,但是这样同时也就不能拖动调整 ...

  10. 在VMWare上安装ubuntu及VMWare&amp;nbs…

    在VMWare上安装ubuntu及VMWare Tools 一.摘要 该文主要介绍了如何在虚拟机上安装ubuntu,和安装VMWare Tools设置共享文件夹,最后对ubuntu做了简单的介绍. 二 ...