[UOJ22]外星人
题解
首先可以发现有效果的\(a_i\)大小一定是递减的,而且一定小于等于当前值
所以我们可以从大到小考虑每个\(a_i\),当确定了一个有效果的\(a_i\)时,\((a_i,x]\)的数都可以随意的放在\(a_i\)之后并且不会造成影响
设\(f_i\)表示考虑完所有的大小大于\(i\)数,当前数值为\(i\)的方案数
\(s_i\)表示\(\le i\)的数的个数
那么\(f_{i\%a[j]}=f_{i}\times A_{s_{i}-1-s[i\%a[j]]}^{s_i-1}\)
表示每次把\(i\%a[j]\sim i-1\)之间的数插在所有\(\le i\)之间的数的方案数
其实这个\(dp\)的过程就相当于把一个一个的数往数列里插入计算贡献,只不过这个\(dp\)的过程是反着的
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
const int M = 5005 ;
const int mod = 998244353 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
}
int n , m , x , minv = 5000 ;
int sum[M] , val[M] , f[M] ;
int inv[M] , fac[M] , finv[M] ;
inline int A(int n , int m) {
return 1LL * fac[n] * finv[n - m] % mod ;
}
int main() {
n = read() ; x = read() ;
for(int i = 1 ; i <= n ; i ++) {
val[i] = read() ; minv = min( minv , val[i] ) ;
m = max(m , val[i]) ; ++ sum[val[i]] ;
}
for(int i = 1 ; i <= 5000 ; i ++) sum[i] += sum[i - 1] ;
inv[1] = 1 ; for(int i = 2 ; i <= 5000 ; i ++) inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod ;
fac[0] = 1 ; for(int i = 1 ; i <= 5000 ; i ++) fac[i] = 1LL * fac[i - 1] * i % mod ;
finv[0] = 1 ; for(int i = 1 ; i <= 5000 ; i ++) finv[i] = 1LL * finv[i - 1] * inv[i] % mod ;
f[x] = 1LL * fac[n] * finv[sum[x]] % mod ;
for(int i = x ; i ; i --)
for(int j = 1 ; j <= n ; j ++)
if(val[j] <= i)
f[i % val[j]] = ( f[i % val[j]] + 1LL * f[i] * A( sum[i] - 1 , sum[i] - sum[i % val[j]] - 1 ) % mod ) % mod ;
for(int i = minv - 1 ; i >= 0 ; i --)
if(f[i]) {
printf("%d\n%d\n",i , f[i]) ;
break ;
}
return 0 ;
}
[UOJ22]外星人的更多相关文章
- uoj22 外星人(dp)
题目大意: 给定一个\(n\)个数的序列\(a\),给定一个\(x\),其中\(a\)数组可以进行顺序的调换,每一个\(a_i\)都能使$x=x \mod a_i \(, 求最后经过一系列计算后的\) ...
- #YCB#待做题目与填坑资料
各种填坑资料(qwq) 主席树(by YL)戳 树套树(by ZSY)戳 不要问我这些题咋来的(查大佬的水表呗) 题目列表: [HDU5977]Garden of Eden [BZOJ2752][HA ...
- UOJ22 UR #1外星人(动态规划)
https://www.cnblogs.com/Gloid/p/10629779.html 这一场的D. #include<bits/stdc++.h> using namespace s ...
- UOJ22. 【UR #1】外星人【DP】【思维】
LINK 题目大意 给你一个序列和一个值x 问你用某种方式对序列安排顺序之后一次对x取mod膜的最大值和方案数 首先发现一个性质 一个数之后所有比它大的数都没有贡献 考虑怎么利用这个性质? 就可以从小 ...
- uoj22 【UR #1】外星人
link 题意: 给一个长为n的序列a[],现在有一个初始值m,问一个1~n的排列p[],满足将m对a[p[i]]顺次取模后得到的值最大,输出最大值和方案数. $n,m\leq 5\times 10^ ...
- TYVJ P1024 外星人的密码数字
做题记录:2016-08-16 20:09:30 描述 XXXX年突然有外星人造访,但大家语言不通,不过科学家们经过研究发现外星人用26个英文字母组成的单词中最长不降子序列的长度来表述数字,且 ...
- P1024 外星人的密码数字
P1024 外星人的密码数字 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 XXXX年突然有外星人造访,但大家语言不通,不过科学家们经过研究发现外星 ...
- Bzoj 2749: [HAOI2012]外星人 欧拉函数,数论,线性筛
2749: [HAOI2012]外星人 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 568 Solved: 302[Submit][Status][ ...
- nyoj 710 外星人的供给站【贪心区间选点】
外星人的供给站 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 外星人指的是地球以外的智慧生命.外星人长的是不是与地球上的人一样并不重要,但起码应该符合我们目前对生命 ...
随机推荐
- JavaScript学习第四天
1.自定义属性,使用好索引值 例子: 下面有一段js代码: <script> window.onload = function(){ var oBtn = document.getElem ...
- ansible 文件模块,很实用
摘自: http://blog.csdn.net/kellyseeme/article/details/50545521
- Loadrunner脚本自动关联和手动关联
关于Loadrunner关联一.什么时候需要关联 1.关联的含义 关联(correlation):在脚本回放过程中,客户端发出请求,通过关联函数所定义的左右边界值(也就是关联规则),在服 ...
- 程序移植到VS2010,编译成功但是无法启动lib文件
今天遇到的这个问题,是由于解决方案下有多个项目,其中包含生成库的项目,也有可执行程序的项目 解决方法:邮件解决方案,属性-通用属性-启动项目进行设置就OK了,我的是设置单启动项目为包含可执行程序的项目 ...
- Swift 控制语句
Control Flow指的是『逻辑控制语句』,包括if.if-else.for.for-in.while.do-while.switch等.其中大部分和OC中差不多,但Swift在某些方便增强了控制 ...
- [SHOI 2007] 善意的投票
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1934 [算法] 首先 , 选择睡觉的人和不选择睡觉的人构成两个集合 这启发我们用最小 ...
- Battle Ships(复习泛化物品**)
传送门Battle Ships Time Limit: 2 Seconds Memory Limit: 65536 KB Battle Ships is a new game which i ...
- ubuntu 16.04 安装 Matlab R2016b后启动出现的问题
(1)报以下错误: License checkout failed.License Manager Error -95MATLAB is unable to connect to the licens ...
- Java类加载器回顾
Java类加载采用了全盘委托机制,默认加载类时子类先会委托给父类加载,但父类加载不到时,子类才会自己尝试加载类.这种机制可以有效防止一个类被加载多次,同时也一定程度上防止重写JDK自身的类[Java自 ...
- 洛谷 1072 Hankson 的趣味题——质因数界限讨论
题目:https://www.luogu.org/problemnew/show/P1072 思路是把每个数质因数分解,答案对于每个质因数的次数有选择的区间,通过这个计算. 指数的限制就是上限是b1, ...