http://poj.org/problem?id=1830

如果开关s1操作一次,则会有s1(记住自己也会变)、和s1连接的开关都会做一次操作。

那么设矩阵a[i][j]表示按下了开关j,开关i会被操作一次,记得a[i][i] = 1是必须的,因为开关i操作一次,本身肯定会变化一次。

所以有n个开关,就有n条方程,

每个开关的操作次数总和是:a[i][1] + a[i][2] + ... + a[i][n]

那么sum % 2就代表它的状态,需要和(en[i] - be[i] + 2) % 2相等。就是操作次数的奇偶性要相等。

那么来一个高斯消元,就知道是否有可能有解。

在有解的情况下,可能存在自由变量,什么意思呢?

就是假设有k个自由变量,那么就是前n - k个变量有固定的操作,使得能变成最终结果,那么这k个自由变量就可以任取值了,一共有2^k种不同的取值方案。因为方案不要求有顺序,所以那个灯取那个状态,都是相同的一种解。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <bitset>
const int maxn = 1e2 + ;
class GaussMatrix { //复杂度O(n3)
public:
int a[maxn][maxn];
int equ, val; //方程(行)个数,和变量(列)个数,其中第val个是b值,不能取
void init() {
for (int i = ; i <= equ; ++i) {
for (int j = ; j <= val; ++j) {
a[i][j] = ;
}
}
}
void swapRow(int rowOne, int rowTwo) {
for (int i = ; i <= val; ++i) {
swap(a[rowOne][i], a[rowTwo][i]);
}
}
void swapCol(int colOne, int colTwo) {
for (int i = ; i <= equ; ++i) {
swap(a[i][colOne], a[i][colTwo]);
}
}
// bool same(double x, double y) {
// return fabs(x - y) < eps;
// }
int guass() {
int k, col; // col,当前要处理的列, k当前处理的行
for (k = , col = ; k <= equ && col < val; ++k, ++col) { //col不能取到第val个
int maxRow = k; //选出列最大值所在的行,这样使得误差最小。(没懂)
for (int i = k + ; i <= equ; ++i) {
if (abs(a[i][col]) > abs(a[maxRow][col])) {
maxRow = i;
}
}
if (a[maxRow][col] == ) { //如果在第k行以后,整一列都是0
--k; //则这个变量就是一个自由变量。
continue;
}
if (maxRow != k) swapRow(k, maxRow); // k是当前的最大行了
for (int i = col + ; i <= val; ++i) { //整一列约去系数
a[k][i] /= a[k][col];
}
a[k][col] = ; //第一个就要变成1了,然后它下面和上面的变成0
for (int i = ; i <= equ; ++i) {
if (i == k) continue; //当前这行,不操作
for (int j = col + ; j <= val; ++j) {
a[i][j] = (a[i][j] - a[i][col] * a[k][j] + ) % ;
}
a[i][col] = ;
}
// debug();
}
for (int res = k; res <= equ; ++res) {
if (a[res][val] != ) return -; //方程无解
}
return val - k; //自由变量个数
}
void debug() {
for (int i = ; i <= equ; ++i) {
for (int j = ; j <= val; ++j) {
cout << a[i][j] << " ";
}
printf("\n");
}
printf("*******************************************\n\n");
}
}arr;
int be[maxn], en[maxn];
void work() {
int n;
cin >> n;
for (int i = ; i <= n; ++i) cin >> be[i];
for (int i = ; i <= n; ++i) cin >> en[i];
arr.init();
// memset(&arr, 0, sizeof arr);
arr.equ = n, arr.val = n + ;
do {
int x, y;
cin >> x >> y;
if (x == && y == ) break;
arr.a[x][x] = ;
arr.a[y][x] = ;
} while (true);
for (int i = ; i <= n; ++i) {
arr.a[i][n + ] = (en[i] - be[i] + ) % ;
arr.a[i][i] = ; //这个是必须的。
}
// arr.debug();
int res = arr.guass();
if (res == -) {
cout << "Oh,it's impossible~!!" << endl;
} else cout << ( << res) << endl;
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
int t;
cin >> t;
while (t--) work();
return ;
}

POJ 1830 开关问题 高斯消元,自由变量个数的更多相关文章

  1. POJ 1830 开关问题 (高斯消元)

    题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...

  2. POJ 1830 开关问题 [高斯消元XOR]

    和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...

  3. POJ.1830.开关问题(高斯消元 异或方程组)

    题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...

  4. POJ 3185 The Water Bowls 【一维开关问题 高斯消元】

    任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  5. POJ - 1681: Painter's Problem (开关问题-高斯消元)

    pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...

  6. POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)

    pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...

  7. A - The Water Bowls POJ - 3185 (bfs||高斯消元)

    题目链接:https://vjudge.net/contest/276374#problem/A 题目大意:给你20个杯子,每一次操作,假设当前是对第i个位置进行操作,那么第i个位置,第i+1个位置, ...

  8. POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)

    依据题意可构造出方程组.方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki; 高斯消元构造上三角矩阵,以最后一个一行为例: C*x9 = ...

  9. POJ 2065 SETI(高斯消元)

    题目链接:http://poj.org/problem?id=2065 题意:给出一个字符串S[1,n],字母a-z代表1到26,*代表0.我们用数组C[i]表示S[i]经过该变换得到的数字.给出一个 ...

随机推荐

  1. hadoop内存分配方案

    Configuration File   Configuration Setting Value Calculation        8G VM (4G For MR)    yarn-site.x ...

  2. ffmpeg遇到inttypes.h和UINT64_C

    http://blog.csdn.net/cll131421/article/details/7763657 编译过程:错误一:无法打开包括文件:“inttypes.h”: No such file ...

  3. 用 Java 抓取优酷、土豆等视频

    1. [代码][JavaScript]代码  import org.jsoup.Jsoup;import org.jsoup.nodes.Document;import org.jsoup.nodes ...

  4. html5--3.22 综合实例03

    html5--3.22 综合实例03 学习要点 通过一个综合实例来回顾学过的内容 这一章的内容比较多,不必强求一下子全记住,多做一些练习,用得多了自然就可以记住了 可以自己找一些实例练练手,比如各网站 ...

  5. codeforces 669B B. Little Artem and Grasshopper(水题)

    题目链接: B. Little Artem and Grasshopper time limit per test 2 seconds memory limit per test 256 megaby ...

  6. SVN与CVS比较-怎度网

    SVN与CVS比较 所有的文档都显示SVN可以取代CVS,同时SVN的问题和缺点都被隐藏了.不幸的是,我们并不认为SVN是CVS的替代品,尽管很多缺陷都被修改了.更有甚者,它甚至让人重回VSS.CVS ...

  7. 用python做自动化测试--Python实现远程性能监控

    http://blog.csdn.net/powerccna/article/details/8044222 在性能测试中,监控被测试服务器的性能指标是个重要的工作,包括CPU/Memory/IO/N ...

  8. SSH框架中hibernate 出现 user is not mapped 问题

    SSH框架中hibernate 出现 user is not mapped 问题      在做SSH框架整合时,在进行DAO操作时.这里就只调用了chekUser()方法.运行时报  user is ...

  9. Makefile的常用技术总结

    一.MAKE中的自动变量:    $@: 表示target的名字    $%: 仅当目标是函数库文件中,表示规则中的目标成员名.例如,如果一个目标是"foo.a(bar.o)",那 ...

  10. 微信小程序内嵌网页能力开放 小程序支持内嵌网页文档说明

    为了方便开发者灵活配置微信小程序,张小龙现在开放了小程序的内嵌网页功能,这是一个非常大的惊喜啊,以后意味着你只要开放一个手机端网站,就可以制作一个小程序了哦.操作方法1.开发者登录微信小程序后台,选择 ...