【Luogu】P4035球形空间产生器(高斯消元)
水比题,把圆方程展开减一下把平方都减掉半径的平方也减掉,高斯消元即可。
然后我只输出两位小数,爆了两次零。我好菜啊。
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
#define maxn 20
#define eps 1e-9
using namespace std; double s[maxn*maxn][maxn];
double q[maxn][maxn]; double ans[maxn]; int main(){
int n;
scanf("%d",&n);
for(int i=;i<=n+;++i)
for(int j=;j<=n;++j) scanf("%lf",&q[i][j]);
int m=;
for(int i=;i<=n;++i)
for(int j=i+;j<=n+;++j){
double *c=s[++m];
for(int k=;k<=n;++k){
c[k]=*(q[i][k]-q[j][k]);
c[n+]+=q[i][k]*q[i][k]-q[j][k]*q[j][k];
}
}
//for(int i=1;i<=m;++i,printf("\n"))
// for(int j=1;j<=n+1;++j) printf("%.2lf ",s[i][j]);
for(int i=;i<=n;++i){
int now=i;
for(int j=i+;j<=m;++j)
if(fabs(s[j][i])-fabs(s[now][i])>eps) now=j;
if(now^i) swap(s[i],s[now]);
double ret=s[i][i];
for(int j=i;j<=n+;++j) s[i][j]=s[i][j]/ret;
for(int j=i+;j<=m;++j){
ret=s[j][i];
for(int k=;k<=n+;++k) s[j][k]=s[j][k]-s[i][k]*ret;
}
}
ans[n]=s[n][n+];
//for(int i=1;i<=m;++i,printf("\n"))
// for(int j=1;j<=n+1;++j) printf("%.2lf ",s[i][j]);
for(int i=n-;i;--i){
ans[i]=s[i][n+];
for(int j=i+;j<=n;++j) ans[i]=ans[i]-ans[j]*s[i][j];
}
for(int i=;i<=n;++i) printf("%.3lf ",ans[i]);
return ;
}
【Luogu】P4035球形空间产生器(高斯消元)的更多相关文章
- 【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元
题目描述 有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标. \(n\leq 10\) 题解 设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0 ...
- BZOJ.1013.[JSOI2008]球形空间产生器(高斯消元)
题目链接 HDU3571 //824kb 40ms //HDU3571弱化版 跟那个一比这个太水了,练模板吧. //列出$n+1$个二次方程后两两相减,就都是一次方程了. #include <c ...
- LG4035/BZOJ1013 「JSOI2008」球形空间产生器 高斯消元
问题描述 LG4035 BZOJ1013 题解 设答案为\((p_1,p_2,p_3,...,p_n)\) 因为是一个球体,令其半径为\(r\),则有 \[\sum_{i=1}^{n}{(a_i-p_ ...
- luogu P2962 [USACO09NOV]灯Lights 高斯消元
目录 题目链接 题解 题目链接 luogu P2962 [USACO09NOV]灯Lights 题解 可以折半搜索 map合并 复杂度 2^(n / 2)*logn 高斯消元后得到每个点的翻转状态 爆 ...
- 【Luogu】P3317重建(高斯消元+矩阵树定理)
题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #inclu ...
- luogu 3389 【模板】高斯消元
大概就是对每一行先找到最大的减小误差,然后代入消元 #include<iostream> #include<cstdio> #include<cstring> #i ...
- Luogu P2455 [SDOI2006]线性方程组 真•高斯消元板子
果然如Miracle学长所说...调了一天...qwq..还是过不了线下的Hack upd after 40min:刚刚过了 就是多了一个判无解的操作... 当系数都为0,且常数项不为0时,即为无解. ...
- 洛谷P4035 [JSOI2008]球形空间产生器(高斯消元)
洛谷题目传送门 球啊球 @xzz_233 qaq 高斯消元模板题,关键在于将已知条件转化为方程组. 可以发现题目要求的未知量有\(n\)个,题目却给了我们\(n+1\)个点的坐标,这其中必有玄机. 由 ...
- 洛谷P4035 球形空间产生器 [JSOI2008] 高斯消元
正解:高斯消元 解题报告: 链接! 昂开始看到以为是,高斯消元板子题? 开始很容易想到的是,虽然是多维但是可以类比二维三维列出式子嘛 但是高斯消元是只能处理一元问题的啊,,,辣怎么处理呢 对的这就是这 ...
随机推荐
- 洛谷 P1903 【模板】分块/带修改莫队(数颜色)
题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2 ...
- UVA 818 Cutting Chains 切断圆环链 (暴力dfs)
题意就是给一张无向图,去掉某些结点,然后连成一条链,问最少去掉几个结点. n很小n<=15,所以直接枚举2^15个状态就行啦. 链的条件是1.无环,2.没有度大于2的点,3.把n个散链连起来需要 ...
- HTML5中的SSE(服务器推送技术)
本文原链接:https://cloud.tencent.com/developer/article/1194063 SSE技术详解:一种全新的HTML5服务器推送事件技术 前言 概述 基本介绍 与We ...
- opensuse 15.0 安装ctdb
问题 1 2019/05/20 15:27:14.574363 ctdb-eventd[26329]: 60.nfs: /etc/ctdb/nfs-linux-kernel-callout: line ...
- 4G 内存 怎么只有2.99G可用
32为系统只可以识别3.25G,而且有256M的内存被显卡共享显存了,所以只剩2,99G.
- c++ 读取文件 最后一行读取了两次
用ifstream的eof(),竟然读到文件最后了,判断eof还为false.网上查找资料后,终于解决这个问题. 参照文件:http://tuhao.blogbus.com/logs/21306687 ...
- webgis技术在智慧城市综合治理网格化社会管理平台(综治平台)的应用
网格化社会管理平台功能:1 实有人口管理人口数据管理按照人口分类进行管理,分为常住人口.流动人口.特殊人群.弱势群体,功能包括人口信息管理.归口负责.人房关联.统计汇总.地图监管服务等功能.人口信 ...
- 配置淘宝镜像,不使用怪异的cnpm
npm config set registry https://registry.npm.taobao.org --global npm config set disturl https://npm. ...
- hash 哈希查找复杂度为什么这么低?
hash 哈希查找复杂度为什么这么低? (2017-06-23 21:20:36) 转载▼ 分类: c from: 作者:jillzhang 出处:http://jillzhang.cnblogs ...
- springboot下https证书配置
没有证书的小伙伴首先申请一个阿里云免费证书,按照我的步骤来操作 1.购买页面是这样的 按照顺序选择 神奇的一幕出现了 然后就去购买成功,我们会看到证书没有签发,我们需要去申请 填写需要绑定的域名 一般 ...