OpenCV2马拉松第15圈——边缘检測(Laplace算子,LOG算子)
收入囊中
- 拉普拉斯算子
- LOG算子(高斯拉普拉斯算子)
- OpenCV Laplacian函数
- 构建自己的拉普拉斯算子
- 利用拉普拉斯算子进行图像的锐化
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="600" height="500" alt="">上面是一阶导数。以下是二阶导数

|
|
| 图5-9 拉普拉斯的4种模板 |
拉普拉斯算子会放大噪声,因此我们採用了LOG算子,就是高斯拉普拉斯算子,先对图像进行高斯模糊。抑制噪声,再求二阶导数。二阶导数为0的地方就是图像的边界。
-
C++: void Laplacian(InputArray src,
OutputArray dst, int ddepth, int ksize=1, double scale=1, double delta=0, int borderType=BORDER_DEFAULT)
-
- src – Source image.
- dst – Destination image of the same size and the same number of channels as src .
- ddepth – Desired depth of the destination image.
- ksize – Aperture size used to compute the second-derivative filters. See getDerivKernels() for
details. The size must be positive and odd. - scale – Optional scale factor for the computed Laplacian values. By default, no scaling is applied. See getDerivKernels() for
details. - delta – Optional delta value that is added to the results prior to storing them in dst .
- borderType – Pixel extrapolation method. See borderInterpolate() for
details.
This is done when ksize > 1 . When ksize == 1 ,
the Laplacian is computed by filtering the image with the following
aperture:

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp" using namespace cv; int main( int, char** argv )
{ Mat src, src_gray;
int kernel_size = 3;
const char* window_name = "Laplace Demo"; src = imread( argv[1] );
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
cvtColor( src, src_gray, CV_RGB2GRAY );
namedWindow( window_name, CV_WINDOW_AUTOSIZE ); Mat dst, abs_dst;
Laplacian( src_gray, dst, CV_16S, kernel_size);
convertScaleAbs( dst, abs_dst ); imshow( window_name, abs_dst );
waitKey(0);
return 0;
}
效果图:
| 1 | 1 | 1 |
| 1 | -8 | 1 |
| 1 | 1 | 1 |
这样的形式的算子,代码例如以下
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv; int main( int, char** argv )
{
Mat src,gray,Kernel; src = imread( argv[1] );
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
cvtColor( src, gray, CV_RGB2GRAY );
namedWindow("dstImage", 1); Kernel = (Mat_<double>(3,3) << 1, 1, 1, 1, -8, 1, 1, 1, 1);
Mat grad,abs_grad;
filter2D(gray, grad, CV_16S , Kernel, Point(-1,-1));
convertScaleAbs( grad, abs_grad ); imshow("dstImage", abs_grad);
waitKey();
return 0;
}
效果图就不发了,跟上面差点儿相同
拉普拉斯锐化的基本方法能够由下式表示:
![]() |
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv; int main( int, char** argv )
{
Mat src,gray; src = imread( argv[1] );
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
cvtColor( src, gray, CV_RGB2GRAY );
namedWindow("srcImage", 1);
namedWindow("dstImage", 1); Mat grad,abs_grad;
Laplacian( gray, grad, CV_16S, 3);
convertScaleAbs( grad, abs_grad );
Mat sharpped = gray + abs_grad; imshow("srcImage", gray);
imshow("dstImage", sharpped);
waitKey();
return 0;
}
效果图:
OpenCV2马拉松第15圈——边缘检測(Laplace算子,LOG算子)的更多相关文章
- OpenCV2马拉松第17圈——边缘检測(Canny边缘检測)
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g 收入囊中 利用OpenCV Canny函数进行边缘检測 掌握Canny算法基本理论 ...
- OpenCV2马拉松第14圈——边缘检測(Sobel,prewitt,roberts)
收入囊中 差分在边缘检測的角色 Sobel算子 OpenCV sobel函数 OpenCV Scharr函数 prewitt算子 Roberts算子 葵花宝典 差分在边缘检測究竟有什么用呢?先看以下的 ...
- openCV2马拉松第19圈——Harris角点检測(自己实现)
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的con ...
- OpenCV图像处理篇之边缘检測算子
3种边缘检測算子 灰度或结构等信息的突变位置是图像的边缘,图像的边缘有幅度和方向属性.沿边缘方向像素变化缓慢,垂直边缘方向像素变化剧烈.因此,边缘上的变化能通过梯度计算出来. 一阶导数的梯度算子 对于 ...
- 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...
- 图像边缘检測--OpenCV之cvCanny函数
图像边缘检測--OpenCV之cvCanny函数 分类: C/C++ void cvCanny( const CvArr* image, CvArr* edges, double threshold1 ...
- Canny边缘检測算法原理及其VC实现具体解释(一)
图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般能够看作是一个阶跃,既从一个灰度值在非常小的缓冲区域内急剧变化到还有一个灰度相差较大的灰度值.图象的边缘部分集中了图象的大部分信息,图 ...
- Python图像处理(8):边缘检測
快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载,但请保留作者信息 此前已经得到了单个区域植株图像,接下来似乎应该尝试对这些区域进行分类识别.通过外形和叶脉进行植物种 ...
- 图像处理之Canny边缘检測
图像处理之Canny 边缘检測 一:历史 Canny边缘检測算法是1986年有John F. Canny开发出来一种基于图像梯度计算的边缘 检測算法,同一时候Canny本人对计算图像边缘提取学科的发展 ...
随机推荐
- 局部a链接样式
原文发布时间为:2010-01-16 -- 来源于本人的百度文章 [由搬家工具导入] <style type="text/css"> <!--默认页面链接-> ...
- EOJ Monthly 2018.2
A. 坑爹的售票机 题意 用\(1,5,10,25,50,100\)的纸币买\(n\)张单价为\(p\)的船票,且一次性最多买\(k\)张,求钱数恰好时最少需要多少张纸币. Hard: \(n,k,p ...
- i2c 协议解析【转】
转自:http://blog.csdn.net/g_salamander/article/details/8016698 版权声明:本文为博主原创文章,未经博主允许不得转载. 1.基本概念 主机 ...
- hexo安装问题解决方法
常见错误 { [Error: Cannot find module './build/Release/DTraceProviderBindings'] code: 'MODULE_NOT_FOUND' ...
- LeetCode OJ-- Jump Game
https://oj.leetcode.com/problems/jump-game/ 从0开始,根据每一位上存的数值往前跳. 这道题给想复杂了... 记录当前位置 pos,记录可以调到的最远达位置为 ...
- 聚类kmeans算法在yolov3中的应用
yolov3 kmeans yolov3在做boundingbox预测的时候,用到了anchor boxes.这个anchors的含义即最有可能的object的width,height.事先通过聚类得 ...
- 超实用的Nginx极简教程,覆盖了常用场景
概述 安装与使用 安装 使用 nginx 配置实战 http 反向代理配置 负载均衡配置 网站有多个 webapp 的配置 https 反向代理配置 静态站点配置 搭建文件服务器 跨域解决方案 参考 ...
- FactoryMethod
工厂方法模式 定义:定义一个用于创建对象的接口,让子类决定实例化哪一个类,工厂方法使一个类的实例化延迟到其子类 工厂方法的简单实现 (1)创建简单的产品接口 /** * 创建产品接口 * @autho ...
- SecureCRT分屏显示
[Tab右键]或者[Session Manager右键]->[Send to New Tab Group]
- Blocks编程要点
[老狼推荐]Blocks编程要点原文:Blocks Programming Topics链接:http://developer.apple.com/library/ios/#documentation ...
