解题关键:求树上三点间的最短距离。

解题关键:$ans = (dis(a,b) + dis(a,c) + dis(b,c))/2$

 //#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<iostream>
typedef long long ll;
using namespace std;
const int maxn=;
const int maxm=;
int _pow[maxm],m,n;
int head[maxn],tot;
int ver[maxn*],depth[maxn*],first[maxn],rmq[maxn*][],id;//5个数组,注意哪个需要乘2
int dis[maxn];
inline int read(){
char k=;char ls;ls=getchar();for(;ls<''||ls>'';k=ls,ls=getchar());
int x=;for(;ls>=''&&ls<='';ls=getchar())x=(x<<)+(x<<)+ls-'';
if(k=='-')x=-x;return x;
} struct edge{
int to,w,nxt;
}e[maxn*];//链式前向星建树 void init(){
memset(head,-,sizeof head);
tot=;
id=;
} void add_edge(int u,int v,int w){
e[tot].to=v;
e[tot].w=w;
e[tot].nxt=head[u];
head[u]=tot++;
} void dfs(int u,int fa,int dep){
ver[++id]=u;//第i个访问到的结点编号
depth[id]=dep;//第i个访问到的结点深度
first[u]=id;
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;
int w=e[i].w;
if(v==fa) continue;
dis[v]=dis[u]+w;//dis是先序遍历求
dfs(v,u,dep+);
ver[++id]=u;//后序遍历,再次访问父节点
depth[id]=dep;
}
} void rmq_init(int n){
int k=int(log(n)/log());
for(int i=;i<=n;++i) rmq[i][]=i;
for(int j=;j<=k;++j){
for(int i=;i+_pow[j]-<=n;++i){//因为存的是索引
int a=rmq[i][j-],b=rmq[i+_pow[j-]][j-];
rmq[i][j]=depth[a]<depth[b]?a:b;
}
}
} int rmq_query(int l,int r){
int k=int(log(r-l+1.0)/log(2.0));
int a=rmq[l][k],b=rmq[r-_pow[k]+][k];
return depth[a]<depth[b]?a:b;
}//返回的依然是索引 int LCA(int u,int v){
int x=first[u],y=first[v];
if(x>y)swap(x,y);
int res=rmq_query(x,y);
return ver[res];
} int main(){
for(int i=;i<maxm;++i) _pow[i]=<<i; //预处理2^n
int t,a,b,c,d,x=;
while(scanf("%d",&n)!=EOF){
if(x++) printf("\n");
init();
for(int i=;i<n-;++i){
a=read()+,b=read()+,c=read();
add_edge(a,b,c);
add_edge(b,a,c);
}
dfs(,-,);
rmq_init(*n-);
d=read();
for(int i=;i<d;++i){
a=read()+;b=read()+;c=read()+;
int t1=LCA(a,b);t1=dis[a]+dis[b]-*dis[t1];
int t2=LCA(b,c);t2=dis[b]+dis[c]-*dis[t2];
int t3=LCA(a,c);t3=dis[a]+dis[c]-*dis[t3];
printf("%lld\n",(t1+t2+t3)/);
}
}
return ;
}

[zoj3195]Design the city(LCA)的更多相关文章

  1. ZOJ Design the city LCA转RMQ

    Design the city Time Limit: 1 Second      Memory Limit: 32768 KB Cerror is the mayor of city HangZho ...

  2. ZOJ3195 Design the city [2017年6月计划 树上问题04]

    Design the city Time Limit: 1 Second      Memory Limit: 32768 KB Cerror is the mayor of city HangZho ...

  3. ZOJ3195 Design the city(LCA)

    题目大概说给一棵树,每次询问三个点,问要把三个点连在一起的最少边权和是多少. 分几种情况..三个点LCA都相同,三个点有两对的LCA是某一点,三个点有两对的LCA各不相同...%……¥…… 画画图可以 ...

  4. ZOJ 3195 Design the city (LCA 模板题)

    Cerror is the mayor of city HangZhou. As you may know, the traffic system of this city is so terribl ...

  5. ZOJ 3195 Design the city LCA转RMQ

    题意:给定n个点,下面n-1行 u , v ,dis 表示一条无向边和边权值,这里给了一颗无向树 下面m表示m个询问,问 u v n 三点最短距离 典型的LCA转RMQ #include<std ...

  6. zoj 3195 Design the city lca倍增

    题目链接 给一棵树, m个询问, 每个询问给出3个点, 求这三个点之间的最短距离. 其实就是两两之间的最短距离加起来除2. 倍增的lca模板 #include <iostream> #in ...

  7. zoj 3195 Design the city LCA Tarjan

    题目链接 : ZOJ Problem Set - 3195 题目大意: 求三点之间的最短距离 思路: 有了两点之间的最短距离求法,不难得出: 对于三个点我们两两之间求最短距离 得到 d1 d2 d3 ...

  8. xtu summer individual 1 C - Design the city

    C - Design the city Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu D ...

  9. zoj——3195 Design the city

    Design the city Time Limit: 1 Second      Memory Limit: 32768 KB Cerror is the mayor of city HangZho ...

随机推荐

  1. Jquery获取iframe中的元素

    iframe与父页面之间相互获取元素的方法: 1.从父页面中获取iframe页面中的元素: 用法: $(window.frames["iframe_include_adverse" ...

  2. 【BZOJ4908】[BeiJing2017]开车 分块

    [BZOJ4908][BeiJing2017]开车 Description 你有n辆车,分别a1, a2, ..., an位置和n个加油站,分别在b1, b2, ... ,bn .每个加油站只能支持一 ...

  3. 使用jQuery Ajax功能的时候需要注意的一个问题

    每次jquery的Ajax请求都会创建一个xmlHttprequest对象,理论上讲,长连接(页面需要和服务器保持长连接,而且在连接超时后需要重新请求连接)的请求是一个无限递归,请求数量是非常大的,但 ...

  4. JavaScript 原型解析

    1.什么是对象?     javascript中除了null和undefined之外都是Object的实例. 在Javascript中, 每定义一个函数, 将伴生一个原型对象. 原型就是用来为同一类对 ...

  5. 九度OJ 1014:排名 (排序)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:8267 解决:2469 题目描述:     今天的上机考试虽然有实时的Ranklist,但上面的排名只是根据完成的题数排序,没有考虑每题的分 ...

  6. opencv常用类总结

    1 Rect_ (const Point_< _Tp > &pt1, const Point_< _Tp > &pt2),Rect的这种两个点的构造函数的两个点 ...

  7. Swift 学习笔记 (解决Swift闭包中循环引用的三种方法)

    话不多说 直接上代码 class SmartAirConditioner { var temperature:Int = //类引用了函数 var temperatureChange:((Int)-& ...

  8. 2017-2018-1 20179209《Linux内核原理与分析》第七周作业

    一.实验 1.1task_struct数据结构 Linux内核通过一个被称为进程描述符的task_struct结构体来管理进程,这个结构体包含了一个进程所需的所有信息.它定义在linux-3.18.6 ...

  9. ABAP 给动态变量赋值

    [转自 http://blog.csdn.net/forever_crazy/article/details/6544830] 需求: 有时写程序的时候,需要给某个动态变量 赋值操作,当字段比较多时, ...

  10. 微信小程序开发:学习笔记[3]——WXSS样式

    微信小程序开发:学习笔记[3]——WXSS样式 快速开始 介绍 WXSS(WeiXin Style Sheets)是一套用于小程序的样式语言,用于描述WXML的组件样式,也就是视觉上的效果. WXSS ...