笔记-python-内存管理

1.      内存使用

1.1.    对象的内存使用

a = 1

1是一个对象,a是引用,指向1。

>>> id(a)

1951821280

这个数字代表内存地址;

在Python中,整数和短小的字符,Python都会缓存这些对象,以便重复使用。当我们创建多个等于1的引用时,实际上是让所有这些引用指向同一个对象。

下面进行测试:

a = 1

b = 1

print(id(a), id(b), a is b)

>>>

1951821280 1951821280 True

这点需要特别注意,特别是在多重数组创建时;

在Python中,每个对象都有存有指向该对象的引用总数,即引用计数(reference count)

可以使用sys包中的getrefcount(),来查看某个对象的引用计数。需要注意的是,当使用某个作为参数,传递给getrefcount()时,参数实际上创建了一个临时的引用;所以,getrefcount()所得到的结果,会比期望的多1.

from sys import getrefcount

a = [1, 2, 3]

print(getrefcount(a))

b = a

print(getrefcount(b))

输出是2和3,而非1和2

1.2.    对象引用对象

Python的一个容器对象(container),比如表、词典等,可以包含多个对象,实际上,容器对象中包含的并不是元素对象本身,而是指向各个元素对象的引用。

class from_obj(object):

def __init__(self, to_obj):

self.to_obj = to_obj

b = [1,2,3]

a = from_obj(b)

print(id(a.to_obj))

print(id(b))

结果是

878391926216

878391926216

显然,a引用了b。

当一个对象A被另一个对象B引用时,A的引用计数将增加1.

容器的引用可能构成复杂的拓扑。

1.3.    引用环

引用环:reference cycle两个对象可能相互引用,构成引用环。

a = []

b = [a]

a.append(b)

即使是一个对象,只需要自己引用自己,也能构成引用环。

a = []

a.append(a)

print(getrefcount(a))

引用环会给垃圾回收机制带来很大的麻烦。

1.4.    引用减少

当然,引用计数是会减少的,比如,删除引用;

from sys import getrefcount

a = [1, 2, 3]

b = a

print(getrefcount(b))

del a

print(getrefcount(b))

或者,引用指向其它对象;

from sys import getrefcount

a = [1, 2, 3]

b = a

print(getrefcount(b))

a = 1

print(getrefcount(b))

2.     
格式

2.1.   
格式

2.1.1.  
格式

3.     
内存回收

内存不是无限的,很多对象也不会一直占用内存,因此,在合适的时候需要内存回收garbage colleciton;

3.1.   
引用计数

Python中的垃圾回收是以引用计数为主,分代收集为辅。引用计数的缺陷是循环引用的问题。
在Python中,如果一个对象的引用数为0,Python虚拟机就会回收这个对象的内存。

回收垃圾无疑需要占用处理能力,垃圾回收时,Python不能进行其它的任务。频繁的垃圾回收将大大降低Python的工作效率,如果内存中的对象不多,就没有必要总启动垃圾回收。

所以,Python只会在特定条件下,自动启动垃圾回收。当Python运行时,会记录其中分配对象(object allocation)和取消分配对象(object deallocation)的次数。当两者的差值高于某个阈值时,垃圾回收才会启动。

可以通过gc模块的get_threshold()方法,查看该阈值:

import gc

print(gc.get_threshold())

返回(700, 10, 10),后面的两个10是与分代回收相关的阈值,后面可以看到。700即是垃圾回收启动的阈值。可以通过gc中的set_threshold()方法重新设置。

也可以手动启动垃圾回收,即使用gc.collect()。

导致引用计数+1的情况

对象被创建,例如a=23

对象被引用,例如b=a

对象被作为参数,传入到一个函数中,例如func(a) 对象作为参数传入到一个函数中会 +2

对象作为一个元素,存储在容器中,例如list1=[a,a]

导致引用计数-1的情况

对象的别名被显式销毁,例如del a

对象的别名被赋予新的对象,例如a=24

一个对象离开它的作用域,例如f函数执行完毕时,func函数中的局部变量(全局变量不会)

对象所在的容器被销毁,或从容器中删除对象

3.1.1.   
分代回收

Python同时采用了分代(generation)回收的策略。这一策略的基本假设是,存活时间越久的对象,越不可能在后面的程序中变成垃圾。程序往往会产生大量的对象,许多对象很快产生和消失,但也有一些对象长期被使用。出于信任和效率,对于这样一些“长寿”对象,我们相信它们的用处,所以减少在垃圾回收中扫描它们的频率。

Python将所有的对象分为0,1,2三代。所有的新建对象都是0代对象。当某一代对象经历过垃圾回收,依然存活,那么它就被归入下一代对象。垃圾回收启动时,一定会扫描所有的0代对象。如果0代经过一定次数垃圾回收,那么就启动对0代和1代的扫描清理。当1代也经历了一定次数的垃圾回收后,那么会启动对0,1,2,即对所有对象进行扫描。

这两个次数即上面get_threshold()返回的(700, 10, 10)返回的两个10。也就是说,每10次0代垃圾回收,会配合1次1代的垃圾回收;而每10次1代的垃圾回收,才会有1次的2代垃圾回收。

同样可以用set_threshold()来调整,比如对2代对象进行更频繁的扫描。

import gc

gc.set_threshold(700, 10, 5)

3.2. 
引用环

引用环的存在会给上面的垃圾回收机制带来很大的困难。这些引用环可能构成无法使用,但引用计数不为0的一些对象。

a = []

b = [a]

a.append(b)

del a

del b

从需求来看,上面两个对象不再使用,应该释放对应的资源;但由于引用环,这两个对象的引用计数都没有降到0,不会被回收;

为了回收这样的引用环,Python复制每个对象的引用计数,可以记为gc_ref。假设,每个对象i,该计数为gc_ref_i。Python会遍历所有的对象i。对于每个对象i引用的对象j,将相应的gc_ref_j减1。

在结束遍历后,gc_ref不为0的对象,和这些对象引用的对象,以及继续更下游引用的对象,需要被保留。而其它的对象则被垃圾回收。

笔记-python-内存管理的更多相关文章

  1. 解读Python内存管理机制

    转自:http://developer.51cto.com/art/201007/213585.htm 内存管理,对于Python这样的动态语言,是至关重要的一部分,它在很大程度上甚至决定了Pytho ...

  2. 转发:[Python]内存管理

    本文为转发,原地址为:http://chenrudan.github.io/blog/2016/04/23/pythonmemorycontrol.html 本文主要为了解释清楚python的内存管理 ...

  3. Python内存管理机制及优化简析(转载)

    from:http://kkpattern.github.io/2015/06/20/python-memory-optimization-zh.html 准备工作 为了方便解释Python的内存管理 ...

  4. linux kernel学习笔记-5内存管理_转

    void * kmalloc(size_t size, gfp_t gfp_mask); kmalloc()第一个参数是要分配的块的大小,第一个参数为分配标志,用于控制kmalloc()的行为. km ...

  5. 【python测试开发栈】python内存管理机制(一)—引用计数

    什么是内存 在开始进入正题之前,我们先来回忆下,计算机基础原理的知识,为什么需要内存.我们都知道计算机的CPU相当于人类的大脑,其运算速度非常的快,而我们平时写的数据,比如:文档.代码等都是存储在磁盘 ...

  6. 【python测试开发栈】—python内存管理机制(二)—垃圾回收

    在上一篇文章中(python 内存管理机制-引用计数)中,我们介绍了python内存管理机制中的引用计数,python正是通过它来有效的管理内存.今天来介绍python的垃圾回收,其主要策略是引用计数 ...

  7. 变量、数据类型、python内存管理

    pycharm快捷键 ctrl + c 复制, 默认复制整行 ctrl + v 粘贴 ctrl + x 剪切 ctrl + a 全选 ctrl + z 撤销 ctrl + f 查找 ctrl + sh ...

  8. python内存管理(通俗易懂,详细可靠)

    python内存管理 python3.6.9 内存管理的官方文档 https://docs.python.org/zh-cn/3.6/c-api/memory.html 一.变量存哪了? x = 10 ...

  9. Python内存管理机制-《源码解析》

    Python内存管理机制 Python 内存管理分层架构 /* An object allocator for Python. Here is an introduction to the layer ...

  10. python内存管理&垃圾回收

    python内存管理&垃圾回收 引用计数器 环装双向列表refchain 在python程序中创建的任何对象都会放在refchain连表中 name = '张三' age = 18 hobby ...

随机推荐

  1. 《web-Mail服务的搭建》

    首先是搭建后台服务: 下载下面2个软件包 extmail-1.2.tar.gz extman-1.1.tar.gz 创建一个extsuite目录,固定格式 mkdir /var/www/extsuit ...

  2. [JQuery] Using skill in JQuery

    Using skill of JQuery 获取兄弟节点 $('#id').siblings() 当前元素的所有兄弟节点 $('#id').prev() 当前元素的前一个兄弟节点 $('#id').p ...

  3. python起源,变量,用户交互,流程语句

    1.Python的起源 Python是一门解释型弱类型编程语言. 特点:简单.明确.优雅 2.Python解释器 CPython官方提供的, 内部使用C语言来实现 PyPy,一次性把我们的代码解释成字 ...

  4. 使用css写三角箭头

    .right-arrow{ width:6px; height:6px; align-self: center; border-right:1px solid #2ac795; border-left ...

  5. 构建第一个Spring Boot2.0应用之集成mybatis(六)

    一.环境: IDE:IntelliJ IDEA 2017.1.1 JDK:1.8.0_161 Maven:3.3.9 springboot:2.0.2.RELEASE 二.步骤 方式一:利用配置文件配 ...

  6. Android 使用GreenDao 添加字段,删除表,新增表操作

    GreenDao 给我个人感觉 比一般的ORM框架要好很多,虽然说上手和其他的比起来,较复杂,但是如果使用熟练以后,你会爱上这个框架的 用这些ORM 框架给我的感觉都是,当升级时,都需要进行数据库所有 ...

  7. 【Java/Android性能优 6】Android 图片SD卡缓存 使用简单 支持预取 支持多种缓存算法 支持不同网络类型 支持序列化

    本文转自:http://www.trinea.cn/android/android-imagesdcardcache/ 本文主要介绍一个支持图片自动预取.支持多种缓存算法.支持数据保存和恢复的图片Sd ...

  8. uLua学习之数据交互(三)

    前言 在上节中,大概谈了一下如何在lua脚本中调用unity3d中的方法来创建游戏物体,这只是很小的一个方面,uLua的优势在于对unity3d中C#语言的扩展和定制.那么如何扩展和定制呢?其中的数据 ...

  9. oracle数据类型及操作

    1. Oracle字符串操作 1.1 字符串类型 Ø CHAR和VARCHAR2类型 l CHAR存放定长字符,如果数据存不满指定长度则用空格补齐,CHAR类型浪费空间换取查询时间的缩短. l VAR ...

  10. WIN7 64位对Excel操作异常

    在本地做Excel导出功能的测试时,报出“检索COM 类工厂中CLSID 为 {00024500-0000-0000-C000-000000000046}的组件时失败”的异常,知道要对Excel进行D ...