You received as a gift a very clever robot walking on a rectangular board. Unfortunately, you understood that it is broken and behaves rather strangely (randomly). The board consists of N rows and M columns of cells. The robot is initially at some cell on the i-th row and the j-th column. Then at every step the robot could go to some another cell. The aim is to go to the bottommost (N-th) row. The robot can stay at it's current cell, move to the left, move to the right, or move to the cell below the current. If the robot is in the leftmost column it cannot move to the left, and if it is in the rightmost column it cannot move to the right. At every step all possible moves are equally probable. Return the expected number of step to reach the bottommost row.

Input

On the first line you will be given two space separated integers N and M (1 ≤ N, M ≤ 1000). On the second line you will be given another two space separated integers i and j (1 ≤ i ≤ N, 1 ≤ j ≤ M) — the number of the initial row and the number of the initial column. Note that, (1, 1) is the upper left corner of the board and (N, M) is the bottom right corner.

Output

Output the expected number of steps on a line of itself with at least 4 digits after the decimal point.

Examples

Input
10 10
10 4
Output
0.0000000000
Input
10 14
5 14
Output
18.0038068653

题意:一个N*M的矩阵,一个机器人站在x,y的位置,每次可以走四种:1.呆在原地 2.向下一步 3.向左一步 4.向右一步。问走到最后一行走的步数的期望是多少
题解:网上有许多高斯消元的方法,这道题也可以多次逼近写,直接推出转移方程。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<cstdlib>
#include <vector>
#include<queue>
using namespace std; #define ll long long
#define llu unsigned long long
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
const int maxn = 1e5+5;
const int mod = 1e9+7; double f[1005][1005]; int main()
{
int N,M;
scanf("%d %d",&N,&M);
int x,y;
scanf("%d %d",&x,&y);
for(int i=N-1;i>=x;i--)
{
for(int k=1;k<=50;k++)
{
for(int j=1;j<=M;j++)
{
if(M == 1)
f[i][1] = (f[i][1] + f[i+1][1])/2 + 1;
else if(j == 1)
f[i][1] = (f[i][1] + f[i][2] + f[i+1][1])/3 + 1;
else if(j == M)
f[i][M] = (f[i][M] + f[i][M-1] + f[i+1][M])/3 + 1;
else
f[i][j] = (f[i][j-1] + f[i][j] + f[i][j+1] + f[i+1][j])/4 + 1;
}
}
}
printf("%lf\n",f[x][y]);
}

Broken robot CodeForces - 24D (概率DP)的更多相关文章

  1. Broken robot CodeForces - 24D (三对角矩阵简化高斯消元+概率dp)

    题意: 有一个N行M列的矩阵,机器人最初位于第i行和第j列.然后,机器人可以在每一步都转到另一个单元.目的是转到最底部(第N个)行.机器人可以停留在当前单元格处,向左移动,向右移动或移动到当前位置下方 ...

  2. Codeforces 28C [概率DP]

    /* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...

  3. codeforces 148D 概率DP

    题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢. 王妃每次抓一仅仅老鼠,龙每次抓完一仅仅老鼠之后会有一仅仅老鼠跑出来. 每次抓老鼠和跑出来的老鼠都是随 ...

  4. codeforces 540D 概率dp

    传送门 大概可以这样理解, 一开始有r个石头, p个布, s个剪刀, 每一天有其中的两个相遇, 如果两个是相同的种类, 什么都不会发生, 否则的话有一个会挂掉, 问最后每一种生存的概率. dp[i][ ...

  5. CodeForces 398B 概率DP 记忆化搜索

    题目:http://codeforces.com/contest/398/problem/B 有点似曾相识的感觉,记忆中上次那个跟这个相似的 我是用了 暴力搜索过掉的,今天这个肯定不行了,dp方程想了 ...

  6. Codeforces 931 概率DP

    A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...

  7. Codeforces - 518D 概率DP初步

    #include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #i ...

  8. Vasya and Magic Matrix CodeForces - 1042E (概率dp)

    大意:给定n*m矩阵, 初始位置(r,c), 每一步随机移动到权值小于当前点的位置, 得分为移动距离的平方, 求得分期望. 直接暴力dp的话复杂度是O(n^4), 把距离平方拆开化简一下, 可以O(n ...

  9. CodeForces 24D Broken robot (概率DP)

    D. Broken robot time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

随机推荐

  1. Oracle子查询和多表查询

    多表查询需要用到表的连接 连接可以分为:(自行百度) 交叉连接(数字逻辑的笛卡尔积,不做解释) 等值连接 例如:select * from t_a, t_b where t_a.xx = t_b.xx ...

  2. Spring事务管理的xml方式

    一个业务的成功: 调用的service是执行成功的,意味着service中调用的所有的dao是执行成功的.  事务应该在Service层统一控制. 如果手动去实现,则需要对dao进行代理,在方法前后进 ...

  3. 面向对象设计与构造:JML规格单元作业总结

    面向对象设计与构造:JML规格单元作业总结 第一部分:JML语言理论基础 JML语言是什么:对Java程序进行规格化设计的一种表示语言 使用JML语言有什么好处: 用逻辑严格的规格取代自然语言,照顾马 ...

  4. Openstack Ocata 多节点分布式部署

    1 安装环境 1.1 安装镜像版本 建议最小化安装,这里用的是CentOS-7-x86_64-Minimal-1511. 1.2 网络规划 本文包含控制节点controller3,计算节点comput ...

  5. windows系统下同时启动三台Tomcat服务的配置&并设置开机启动服务

    1.tomcat 7.0.82下载地址:链接:https://pan.baidu.com/s/1i51pAgl 密码:mxol 2.解压apache-tomcat-7.0.82-windows-x64 ...

  6. 从零开始的全栈工程师——js篇2.2

    条件语句 补充: var a=“hello world” a这个变量是字符串了 对于里面每一个字母来说 他是字节 里面有11个字节 字节总数用length表示 如下: 根据上面的内容咱们又发现了一个运 ...

  7. 原生css3作响应式布局

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  8. addin修改启动路径

  9. Js面向对象之观察者模式

    //模拟一个目标可能拥有的一些列依赖 function ObserverList() { this.observerList = []; }; //添加一个观察者 ObserverList.proto ...

  10. go语言,第三方包相对路径导入包引起的问题及解决方案(goquery)

    对go语言而言,跟踪init很显然包有且仅有一次被导入的可能. 但是重复引用了goquery包,后编译出现问题 项目涉及相关目录 ├── main.go└── parse    └── parse.g ...