DAG上的动态规划——嵌套矩阵问题
问题描述:有n个矩形,每个矩形可以用两个整数a,b描述,表示它的长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d,或者b<c,a<d(相当于把矩形X旋转90°)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)内。你的任务是选出尽可能多的矩形排成一行。使得除了最后一个之外,每个矩形都可以嵌套在下一个矩形内。如果有多解,矩阵编号的字典序应该尽量小。
思路:见紫书。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <deque>
#include <stack>
#include <list> #define FRER() freopen("in.txt", "r", stdin)
#define FREW() freopen("out.txt", "w", stdout) #define INF 0x3f3f3f3f using namespace std; /*
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2
*/
const int maxn = + ; typedef pair<int, int> P; P point[maxn]; int G[maxn][maxn], d[maxn], n; int dp(int i) {
if(d[i])
return d[i];
int& ans = d[i];
ans = ;
for(int j = ; j <= n; ++j)
if(G[i][j])
ans = max(ans, dp(j) + );
return ans;
} void print(int i) {
cout << i << ' ';
for(int j = ; j <= n; ++j)
if(G[i][j] && d[i] == d[j] + ) {
print(j);
return ;
}
} int main()
{
ios::sync_with_stdio();
cin.tie(); int T;
cin >> T;
while(T--) {
memset(G, , sizeof(G));
memset(d, , sizeof(d));
cin >> n;
for(int i = ; i <= n; ++i) {
cin >> point[i].first >> point[i].second;
for(int j = ; j < i; ++j) {
if(point[i].first < point[j].first && point[i].second < point[j].second)
G[i][j] = ;
else if(point[j].first < point[i].first && point[j].second < point[i].second)
G[j][i] = ;
}
}
int idx = ;
for(int i = ; i <= n; ++i)
if(dp(i) > d[idx])
idx = i;
cout << d[idx] << endl;
print(idx);
cout << endl;
}
return ;
}
DAG上的动态规划——嵌套矩阵问题的更多相关文章
- DAG上的动态规划---嵌套矩形(模板题)
一.DAG的介绍 Directed Acyclic Graph,简称DAG,即有向无环图,有向说明有方向,无环表示不能直接或间接的指向自己. 摘录:有向无环图的动态规划是学习动态规划的基础,很多问题都 ...
- DAG上的动态规划之嵌套矩形
题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...
- UVa 103 Stacking Boxes --- DAG上的动态规划
UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...
- 第九章(二)DAG上的动态规划
DAG上的动态规划: 有向无环图上的动态规划是学习DP的基础,很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 1.没有明确固定起点重点的DAG模型: 嵌套矩形问题:有n个矩形,每个矩形可 ...
- UVA 1025 "A Spy in the Metro " (DAG上的动态规划?? or 背包问题??)
传送门 参考资料: [1]:算法竞赛入门经典:第九章 DAG上的动态规划 题意: Algorithm城市的地铁有 n 个站台,编号为 1~n,共有 M1+M2 辆列车驶过: 其中 M1 辆列车从 1 ...
- 嵌套矩形——DAG上的动态规划
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.非常多问题都能够转化为DAG上的最长路.最短路或路径计数问题. 题目描写叙述: 有n个矩形,每一个矩 ...
- DP入门(2)——DAG上的动态规划
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题 ...
- 9.2 DAG上的动态规划
在有向无环图上的动态规划是学习动态规划的基础,很多问题都可以转化为DAG上的最长路,最短路或路径计数问题 9.2.1 DAG模型 嵌套矩形问题: 矩形之间的可嵌套关系是一种典型的二元关系,二元关系可以 ...
- DAG 上的动态规划(训练指南—大白书)
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.矩形嵌套 题目描述: ...
随机推荐
- 新浪php面试题
1. echo count("abc"); 输出什么?答:"1" count — 计算数组中的单元数目或对象中的属性个数int count ( mixed $v ...
- GCC的内存边界对齐
GCC有三种影响内存对齐的开关: 首先是命令行参数 –fpack_struct=n (n只可以是1,2,4,8等2的幂,而且要小于平台默认的对齐字节数,否则不会生效) ...
- javascript 获取dom书的下一个节点。
利用javascript 写一个在页面点击加减按钮实现数字的累加.. 简略的html大概如此.看得懂就好不要在意这些细节啊 <input type="button" valu ...
- 【Android车载系统 News | Tech 5】车载设计开发
1. 基于Android的车载移动终端系统的研究与开发 http://wenku.baidu.com/link?url=hIKlQ2myEmR8N0CA28a_SLzLA2Q9R5Xpk20OJ53h ...
- pysnmp使用
install yum install python-pysnmp yum install python-pyasn1 or pip install pysnmp pip install pyasn1 ...
- 使用tooltip显示jquery.validate.unobtrusive验证信息
通过重写CSS实现使用tooltip显示jquery.validate.unobtrusive验证信息,效果如图: 1. 在ViewModel中定义验证规则 [Display(Name = " ...
- Android商城开发系列(十)—— 首页活动广告布局实现
在上一篇博客当中,我们讲了频道布局的实现,接下来我们讲解一下活动广告布局的实现,效果如下图: 这个是用viewpager去实现的,新建一个act_item.xml,代码如下所示: <?xml v ...
- MVC 控制器向View传值的三种方法(转)
1.提供视图模型对象 你能把一个对象作为View方法的参数传递给视图. public ViewResult Index() { DateTime date = DateTime.Now; return ...
- 这些年,在wp平台打拼的日子
最近经常胃疼,在当地的镇医院看了几次都没有改善,只好去市医院照胃镜检查,发现有胃炎,虽然是很普通和常见的毛病,但这种毛病一但沾上,就很难根治,一喝酒或者吃饭不定时.熬夜.吃酸辣冷冻等食物都容易引起复发 ...
- IOS tableView的数据刷新
1.tableView的刷新 1> 数据刷新的总体步骤 * 修改模型数据 * 刷新表格(刷新界面) 2> 刷新表格(刷新界面)的方法 * 全局刷新(每一行都会重新刷新) - (void)r ...