题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183

题解:

方法一:贪心。

在草稿纸上试多几次可以知道,删除数字中从左到右最后一位递增(可以等于)的数字,可以得到最小值,在这个基础下,又继续删除最后一位递增的数字,得到的依然是最小值。这就表明当前这步的贪心不仅是当前最优,而且对于下一步贪心来说也是最优的。所以每次删除最后递增项就可以了。

初期代码(每次循环找最后递增项):

Accepted 3183 46MS 1408K 1259 B G++
#include<cstdio>//hdu3183 贪心,删除不严格递增序列的最后一个元素
#include<cstring>
#include<algorithm>
#define MAX(a,b) (a>b?a:b)
#define LL long long
#define mod 1000000007 using namespace std; int main()
{
int n,m;
char dig[1005],ans[1005];
while(scanf("%s%d",dig,&m)!=EOF)
{
n = strlen(dig);
if(n<=m)
{
puts("0");
continue;
} for(int i = 0; i<m; i++)
{
//每次从头开始找递增序列的最后一个元素
int j = 0,last = 0,de = 0;
for(j = 1;j<=n-1; j++)
{
if(dig[j]==0) continue;
if(dig[last]<=dig[j])//用last记录上次的最后一个递增元素,以便跳过已经被删除的元素
last = j;
else break;
}
dig[last] = 0;//将递增序列的最后一个元素标记,删除
}
int cnt = 0;
for(int i = 0; i<n; i++)//将未被删除的导入数组中,
if(dig[i]) ans[cnt++] = dig[i]; int j = 0;
while(j<cnt-1 && ans[j]=='0')//跳过前导0,但要留最后一位,因为答案可能就为0
j++;
while(j<cnt)
putchar(ans[j++]);
putchar('\n');
}
return 0;
}

后来发现:每一次都循环找出递增项,其实已经重复操作了。因为在上一次删除中,前面的数字肯定是递增的,这就不用再重新扫一次了,只需要判断当前数字是否也递增,如果递增,则继续下一个数字,如果不是,则将前面的数字删除,直到前面的数字<=当前数字或者删除完毕。这样单调队列就派上用场了。

Accepted 3183 15MS 1404K 1003 B G++

代码如下:

#include<cstdio>//hdu3183 单调队列
#include<cstring>
#include<algorithm>
#define MAX(a,b) (a>b?a:b)
#define LL long long
#define mod 1000000007 using namespace std; char q[1005]; int main()
{
int n,m;
char a[1005];
while(~scanf("%s%d",a,&m))
{
n = strlen(a);
if(n<=m)
{
puts("0");
continue;
} int rear = 0, cnt = 0;
int i;
for(i = 0; i<n; i++)
{
while(rear>0 && cnt<m && a[i]<q[rear])
rear--, cnt++;
if(cnt==m) break; q[++rear] = a[i];
}
while(rear>0 && cnt<m)//没有删除够,继续删
rear--, cnt++; while(rear>0)//将队列里的元素倒入数组中,准备输出
a[--i] = q[rear--]; while(i<=n-2 && a[i]=='0') i++;//跳过前导0;但要留最后一位,因为答案可能就为0
for(;i<n; i++)
putchar(a[i]);
putchar('\n');
}
return 0;
}

方法二:RMQ or 线段树

问题可以转化为:在这n个数字中选n-m个数(只能从左往右一次选),使得组成的数最小。

可知第一个数字必定在0~n-1-(m-1),即0~n-m之内取得,且取最小的数字。设第一个数取得的位置为pos,则取得第二个数的范围为:pos+1~n-m+1, 然后又将pos设为取得第二个数的位置,则取得第三个数的范围为:pos+1~n-m+2 …………

查询区间最小值可以用RMQ或者线段树实现。

RMQ:

#include<cstdio>//hdu3183 RMQ
#include<cstring>
#include<algorithm>
#include<cmath>
#define MIN(a,b) (a<b?a:b)
#define LL long long
#define mod 1000000007 using namespace std; char s[1005], ans[1005];
int n,m,st[1005][20];//st存最值得下标 int Get_min(int x, int y)
{
return (s[x]<=s[y]?x:y);
} int init_RMQ()
{
for(int i = 0; i<n; i++)
st[i][0] = i; for(int j = 1; (1<<j)<n; j++)
for(int i = 0; i+(1<<j)-1<n; i++)
st[i][j] = Get_min(st[i][j-1],st[i+(1<<(j-1))][j-1]);
} int find_k(int le, int ri)
{
int k = log(ri-le+1)/log(2);
return Get_min(st[le][k],st[ri-(1<<k)+1][k]);
} int main()
{
while(~scanf("%s%d",s,&m))
{
n = strlen(s);
m = n-m;
init_RMQ(); int pos = 0,cnt = 0;
while(m)
{
pos = find_k(pos,n-m);
ans[cnt++] = s[pos++];
m--;
} int i = 0;
for(; i<cnt-1; i++)
if(ans[i]!='0') break;
if(cnt==0)
putchar('0');
else for(; i<cnt; i++)
putchar(ans[i]);
putchar('\n');
}
return 0;
}

线段树:

注意:在建树时,下标为mid的元素要归到左边去。

如果归到右边:

设le=3,ri=4;

mid = (le+ri)/2 = 3;

build(le,mid-1); //实际为: build(3,2) 出错

build(mid,ri);//实际为:build(3,4),即又为原始的le和ri, 永久执行下去……

代码如下:

#include<cstdio>//hdu3183 线段树
#include<cstring>
#include<cmath>
#include<algorithm>
#define LL long long using namespace std; int n,m;
char s[1005], ans[1005]; struct node
{
int pos,le,ri;
}tree[4005]; void build(int u, int le ,int ri)
{
tree[u].le = le;//将结点所指向的范围保存到结点中
tree[u].ri = ri; if(le==ri)
{
tree[u].pos = le;
return;
} int mid = (le+ri)/2;
build(u*2,le,mid);//左右建树
build(u*2+1,mid+1,ri); if(s[tree[u*2].pos]<=s[tree[u*2+1].pos])
tree[u].pos = tree[u*2].pos;
else
tree[u].pos = tree[u*2+1].pos;
} int query(int u,int x, int y)
{
int le = tree[u].le, ri = tree[u].ri;
if(le==x && ri==y)
return tree[u].pos; int mid = (le+ri)/2;
if(y<=mid) return query(u*2,x,y);//查询范围在左边
else if(x>mid) return query(u*2+1,x,y);//查询范围在右边
//else return (s[query(u*2,x,mid)]<=s[query(u*2+1,mid+1,y)]?tree[u*2].pos:tree[u*2+1].pos); //有误
else//查询范围被分成两段
{
int xx = query(u*2,x,mid);
int yy = query(u*2+1,mid+1,y);
if(s[xx]<=s[yy]) return xx;
return yy;
}
} int main()
{
while(~scanf("%s%d",s,&m))
{
n = strlen(s);
m = n-m;
build(1,0,n-1); int pos = 0,cnt = 0;
while(m)
{
pos = query(1,pos,n-m);
ans[cnt++] = s[pos++];
m--;
} int i = 0;
for(; i<cnt-1; i++)
if(ans[i]!='0') break;
if(cnt==0)
putchar('0');
else for(; i<cnt; i++)
putchar(ans[i]);
putchar('\n');
}
return 0;
}

HDU3183 A Magic Lamp —— 贪心(单调队列优化)/ RMQ / 线段树的更多相关文章

  1. USACO 2009 Open 干草塔 Tower of Hay(贪心+单调队列优化DP)

    https://ac.nowcoder.com/acm/contest/1072/B Description 为了调整电灯亮度,贝西要用干草包堆出一座塔,然后爬到牛棚顶去把灯泡换掉.干草包会从传送带上 ...

  2. BZOJ1233 [Usaco2009Open]干草堆tower[贪心+单调队列优化]

    地址 注意思路!多看几遍! 很巧妙的一道题.不再是决策点以dp值中一部分含j项为维护对象,而是通过维护条件来获取决策. 首先有个贪心策略,让底层的宽度尽可能小,才能让高度尽可能高.所以应该倒着dp,表 ...

  3. 完美字符子串 单调队列预处理+DP线段树优化

    题意:有一个长度为n的字符串,每一位只会是p或j.你需要取出一个子串S(注意不是子序列),使得该子串不管是从左往右还是从右往左取,都保证每时每刻已取出的p的个数不小于j的个数.如果你的子串是最长的,那 ...

  4. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  5. BZOJ1233 [Usaco2009Open]干草堆tower 【单调队列优化dp】

    题目链接 BZOJ1233 题解 有一个贪心策略:同样的干草集合,底长小的一定不比底长大的矮 设\(f[i]\)表示\(i...N\)形成的干草堆的最小底长,同时用\(g[i]\)记录此时的高度 那么 ...

  6. LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)

    传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...

  7. 【笔记篇】单调队列优化dp学习笔记&&luogu2569_bzoj1855股票交♂易

    DP颂 DP之神 圣洁美丽 算法光芒照大地 我们怀着 崇高敬意 跪倒在DP神殿里 你的复杂 能让蒟蒻 试图入门却放弃 在你光辉 照耀下面 AC真心不容易 dp大概是最经久不衰 亘古不化的算法了吧. 而 ...

  8. POj3017 dp+单调队列优化

    传送门 解题思路: 大力推公式:dp[i]=min(dp[k]+max(k+1,i)){k>=0&&k<i},max(j,i)记为max(a[h]){h>k& ...

  9. Codeforces 1304F1/F2 Animal Observation(单调队列优化 dp)

    easy 题目链接 & hard 题目链接 给出一张 \(n \times m\) 的矩阵,每个格子上面有一个数,你要在每行选出一个点 \((i,t)\),并覆盖左上角为 \((i,t)\), ...

随机推荐

  1. rostopic pub

    rostopic pub -1 reinit_motor_wheel std_msgs/String -- "reinit_motor_wheel"rostopic pub -r ...

  2. SSM整合案例

    使用IDEA整合SSM spring核心配置文件:beans_core.xml/applicationContext.xml <?xml version="1.0" enco ...

  3. [simple-orm-mybaits]基于Mybatis的ORM封装介绍

    目录 前言 ORM框架现状 Mybatis优缺点 simple-orm-mybatis设计思路介绍 simple-orm-mybatis使用说明 simple-orm-mybatis实际使用 推荐最佳 ...

  4. python获取对象的信息

    Types 判断基本数据类型可以直接写int,str等,但如果要判断一个对象是否是函数怎么办?可以使用types模块中定义的常量. >>> import types >> ...

  5. iphone坐标系统

    1,基本概念 CGPoint{x,y};空间中的位置,通过x和y坐标定义 CGSize{width, height}; 大小,通过宽度和高度定义 CGRect{origin, size};位置和大小, ...

  6. 邁向IT專家成功之路的三十則鐵律 鐵律十:IT人思維之道-跳脫框架

    莊子的哲學思想歸本於老子,他認為人要解脫束縛必須做到不從任何的角度與任何的時間來看待事物,而是必須與天地同體,然而也唯有如此才能看清宇宙間萬事萬理的真諦.無論是莊子還是老子,他們畢竟是中國古代的聖賢, ...

  7. dubbo常见问题解答FAQ

    常见问题解答 1. 如果服务注册不上怎么办? 2. 出现RpcException: No provider available for remote service异常怎么办? 3. 出现调用超时co ...

  8. iOS 多线程技术2

    iOS 多线程技术2 NSOperation NSInvocationOperation //创建一个队列 NSOperationQueue *queue = [[NSOperationQueue a ...

  9. 非常不错的ajax原理总结

    在工作中用了Ajax N多次了,也看过一些相关方面的书籍,也算是认识了它,但是一直没有认真总结和整理过相关的东东,失败!近有闲情,将之总结如下:[名称]Ajax是Asynchronous JavaSc ...

  10. Django开发微信公众平台

    处理微信发来的信息,实际上就是处理xml的过程.先写xml工具类 # -*- coding:utf-8 -*- from xml.dom import minidom from Web.model.W ...