学习RMQ-ST表
RMQ一般是一个二维数组,用$dp[i][j]$表示起点为i开始连续数$2^j$个元素其中的最值,由于对于一个闭区间有:$R-L+1=len$因此也可以用另外一种记法:闭区间为$[i,i+2^j-1]$内的最值。个人感觉后者可能更有助于代码的理解和手写。
然后就是预处理的步骤,显然元数组可以用来初始化$dp[i][0]$,然后剩下的用循环来处理,此时也许不知道具体代码怎么写,但是一定可以想到如果我知道了一个区间的左边半个dp和右边半个dp,那么这个区间的dp就知道了,因此我们要一层一层地增加这个“半个”的长度,所以循环顺序是j在外i在内,不理解的话自己写一下手推 的过程就知道了。
以前感觉RMQ不好用因为对于区间的边界处理完全不懂,如果数组下标从0开始我估计就不会了,现在可以用上面的话来得到dp方程:$dp[i][j]=max(dp[i][j-1], dp[i+(1<<(j-1))][j-1])$,即闭区间$[i,i+2^j-1]$被分为左半部分$[i, i+2^{j-1}-1]$与右半部分$[i+2^{j-1}, i+2^j-1]$。
区间预处理结束后还有个区间最值查询,先用区间得到最接近的但不超过实际长度的$2^k$长度,然后在$[l, l+2^k-1]$与$[r-2^k+1, r]$取最值,自己试着推一下就可以发现这样既不会超出区间长度又不会不能覆盖区间。
RMQ的预处理复杂度是$O(nlog_{2}n)$,查询的复杂度是$O(1)$,在不修改的情况下比线段树好用很多,而且配合一些算法原本线段树会T的RMQ就可以过
下面给出我自己总结的RMQ-ST模版以区间最大值为例,感觉在理解区间边界的情况下很容易写出来,挺好用的
void RMQ_init(int l, int r)
{
int i, j;
for (i = l; i <= r; ++i)
dp[i][0] = cow[i];
for (j = 1; l + (1 << j) - 1 <= r; ++j)
{
for (i = l; i + (1 << j) - 1 <= r; ++i)
{
dp[i][j] = max<int>(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
}
}
}
int ST(int l, int r)
{
int k = log2(r - l + 1);
return max<int>(dp[l][k], dp[r - (1 << k) + 1][k]);
}
学习RMQ-ST表的更多相关文章
- RMQ——ST表
ST表 ST表是一种解决RMQ问题的强有力工具, 可以做到O(nlogn)预处理,O(1)查询. st[i][j] 表示区间 [i, i + 2 ^ j - 1] 的最大值. 初值 st[i][0] ...
- [学习笔记]ST表
ST表 给定一个数列$a,O(nlogn)$预处理,$O(1)$查询数列在区间$[l,r]$的最值. 本文介绍求最大值. 实现 预处理 $st[i][j]$表示$max\{a_k\}(k\in[i,i ...
- hdu6356 Glad You Came 杭电多校第五场 RMQ ST表(模板)
Glad You Came Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) ...
- RMQ—ST表
RMQ(Range Minimum/Maximum Query),RMQ是一个求给定范围内最大最小值的问题.我们一般使用st算法来解决这类问题(Sparse Table).这个算法原理不难,主要是各种 ...
- 学习笔记——ST表
作用: 给定一个数列 ai O(nlogn) 预处理 O(1) 查询区间最值 实现: 定义f(i,j) 为ai开始,包括ai的连续2^j个元素的最值 下面以最大值为例: f(i,j)表示max{ak} ...
- 算法学习 - ST表 - 稀疏表 - 解决RMQ问题
2017-08-26 21:44:45 writer:pprp RMQ问题就是区间最大最小值查询问题: 这个SparseTable算法构造一个表,F[i][j] 表示 区间[i, i + 2 ^ j ...
- [poj3264]rmq算法学习(ST表)
解题关键:rmq模板题,可以用st表,亦可用线段树等数据结构 log10和log2都可,这里用到了对数的换底公式 类似于区间dp,用到了倍增的思想 $F[i][j] = \min (F[i][j - ...
- 【算法学习笔记】RMQ问题与ST表
\(0.\) RMQ问题 P1816 人话翻译 给定一个长度为\(n\)的数列\(a\),然后有\(m\)组询问,每次询问一个区间\([l,r]\)的最小值. 其中\(m,n\leq10^5\) \( ...
- ST表 求 RMQ(区间最值)
RMQ即Range Minimum/Maximun Query,中文意思:查询一个区间的最小值/最大值 比如有这样一个数组:A{3 2 4 5 6 8 1 2 9 7},然后问你若干问题: 数组A下标 ...
- ST表入门学习poj3264 hdu5443 hdu5289 codeforces round #361 div2D
ST算法介绍:[转自http://blog.csdn.net/insistgogo/article/details/9929103] 作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例 方 ...
随机推荐
- 外网访问FTP服务,解决只能以POST模式访问Filezilla的问题
在内网可以正常使用PASV,但是在外网不行,导致数据传输慢或者根本连接不了,在FlashFXP中通过日志,找到了解决方法解决方法1.在Filezilla——Edit——Settings——Passiv ...
- profix使用过程中遇到的一些问题
1.(自动 DNS 模式检测) 本地 DNS 服务可用.通过代理服务器的名称解析已禁用. 我当时遇到的问题情况是:本来是可以正常上网的,然后用软件管家进行操作后,具体我也不记得了,反正是改动了 run ...
- js表单序列化时,非空判断
在项目中,对于数据的传输一般需要非空的判断,而数据字段较多时一般直接将表单序列化,此时如何判断非空,如下 因为将表单序列化时,数据格式为 trainKind=1&trainKindCode=1 ...
- Bootstrap历练实例:按钮(Button)插件单个切换
单个切换 如需激活单个按钮的切换(即改变按钮的正常状态为按压状态,反之亦然),只需向 button 元素添加 data-toggle="button" 作为其属性即可,如下面实例所 ...
- C# FileStream对象
FileStream对象表示在磁盘或网络路径上指向文件的流.当类提供向文件读写字节的方法时,经常使用StreamReader或StreamWriter执行这些功能.这是因为FileStream类操作字 ...
- tomcat的启动和部署
方法/步骤 1 一.安装JDK和Tomcat 1,安装JDK:直接运行jdk-7-windows-i586.exe可执行程序,默认安装即可. 备注:路径可以其他盘符,不建议路径包含中文名及特殊符号. ...
- Android驱动开发读书笔记六
第六章 Linux 驱动的工作和访问方式是 Linux 的亮点之一,Linux 系统将每一个驱动都映射成一个文件.这些文件称为设备文件或驱动文件,都保存在/dev目录中,由于大多数Linux驱动都有与 ...
- [JZOJ] 5935. 小凯学数学
由Noip2018初赛的知识得,a|b + a&b = a+b 设计一个区间dp,设\(f[l][r][x]\)表示区间\([l,r]\)能否构成\(x\),数据不大,转移暴力枚举 复杂度\( ...
- Oracle两种临时表的创建与使用详解
ORACLE数据库除了可以保存永久表外,还可以建立临时表temporary tables.这些临时表用来保存一个会话SESSION的数据,或者保存在一个事务中需要的数据.当会话退出或者用户提交comm ...
- Git add命令
git add -A和 git add . git add -u在功能上看似很相近,但还是存在一点差别 git add . :他会监控工作区的状态树,使用它会把工作时的所有变化提交到暂存区,包括文 ...