ML assignment #1
ML assignment #1
Problem:
implement classification model to train the Iris dataset and make predictions.
Environment:
Navigator and Jupyter notebook
Language:
python 2.7
Module:
graphlab, matplotlib
Workflow:
1、decision tree using trainset and testset
首先使用graphlab.SFrame.read_csv(“Iris.csv”)導入數據集,然後將數據集,然後將其random split為trainset 和 testset,使用graphlab.decision_tree_classifier.create(train_data,target = target,features = features)
訓練model.該function會自動進行pruning 來防止overfitting.
訓練結果:
接著使用model.evaluate()分析預測準確率,準確率結果為:0.9629629629629629
使用model.predict()對testset做出prediction,檢驗訓練模型. 並用 matplotlib畫出confusion matrix.
confusion matrix:
2、decision tree using K-fold cross validation
首先使用 graphlab.cross_validation.KFold(iris,10)將iris數據集進行10-fold拆分. 然後loop進行模型訓練,計算平均誤差.
最後的平均正確率結果為: 0.926666666667, 更佳符合實際.
3、decision using boosting
graphlab.boosted_trees_classifier.create(train_data,target=target,features=features)
對 train_data用boosting進行訓練,從結果中可以發現,耗時優於上面其他decision tree 算法.
接著使用model.evaluate()分析預測準確率,準確率結果為:0.9629629629629629
使用model.predict()對testset做出prediction,檢驗訓練模型. 並用 matplotlib畫出confusion matrix.
4、using random forest graphlab.random_forest_classifier.create(train_data,target=target,features=features)
對 train_data進行random forest訓練.
結果如下:
會發現耗時較長,效率較差.
Conclusion:
總共使用了四種方法來對Iris 數據集進行模型訓練,其中1,3,4準確率相等,2略低但更符合test結果.所有的模型的confusion matrix均相同.
ML assignment #1的更多相关文章
- Programming Assignment 5: Kd-Trees
用2d-tree数据结构实现在2维矩形区域内的高效的range search 和 nearest neighbor search.2d-tree有许多的应用,在天体分类.计算机动画.神经网络加速.数据 ...
- Spark ML下实现的多分类adaboost+naivebayes算法在文本分类上的应用
1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一 ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...
- Spark2 ML 学习札记
摘要: 1.pipeline 模式 1.1相关概念 1.2代码示例 2.特征提取,转换以及特征选择 2.1特征提取 2.2特征转换 2.3特征选择 3.模型选择与参数选择 3.1 交叉验证 3.2 训 ...
- [Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine ...
- [Machine Learning & Algorithm]CAML机器学习系列1:深入浅出ML之Regression家族
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 符号定义 这里定义<深入浅出ML>系列中涉及到的公式符号,如无特殊说明,符号 ...
- Atitit GRASP(General Responsibility Assignment Software Patterns),中文名称为“通用职责分配软件模式”
Atitit GRASP(General Responsibility Assignment Software Patterns),中文名称为"通用职责分配软件模式" 1. GRA ...
- 机器学习 - ML
CNCC - 2016 | 机器学习(原文链接) Machine Learning - ML,机器学习起源于人工智能,是AI的一个分支. 机器学习的理论基础:计算学习理论 - Computationa ...
随机推荐
- Android图片缓存之初识Glide(三)
前言: 前面总结学习了图片的使用以及Lru算法,今天来学习一下比较优秀的图片缓存开源框架.技术本身就要不断的更迭,从最初的自己使用SoftReference实现自己的图片缓存,到后来做电商项目自己的实 ...
- 【swagger】2.swagger提供开发者文档--返回统一格式篇【spring mvc】【spring boot】
接着上一篇来说, 不管正常返回结果还是后台出现异常,应该返回给前台统一的响应格式. 所以这一篇就为了应对解决这个问题. ======================================== ...
- 每天进步一点点—SQL优化
一. SQL优化 1. 通过show status 命令了解各种SQL的运行频率 mysql>show status like 'Com_%'; +----------- ...
- ruby简单的基础 4
后缀标点符号 =结尾假设方法名字以=结尾的,那么在调用此方法时能够省略这个=. ?结尾作为一个实用惯例,那些返回布尔值的方法通常都有一个以问号结尾的名字. .结尾这个命名惯例通常时对两种方法区分:以感 ...
- Azure Mobile App - Custom Authentication
Custom Authentication: 1. For OLD Mobile Service - https://azure.microsoft.com/en-us/documentation/a ...
- Python中cv2库和matplotlib库色彩空间排布不一致
今天在python中读如图片时发现以下问题: 1.在from matplotlib import pyplot as plt之后,再import cv2 cv2.imshow()不能正常使用,还不知道 ...
- 运维基础-IO 管道
什么是文件描述符FD或者文件句柄? 通过构建一个带有编号标记的通道(文件描述符)的进程结构来管理打开的文件.今晨连接到文件,从而达到这些文件所代表的的数据内容或者设备.通过使用通道0.1.2(称为标准 ...
- 详谈kubernetes更新-2
系列目录 本文详细探索deployment在滚动更新时候的行为 要详细探讨的参数描述: livenessProbe:存活性探测.判断pod是否已经停止 readinessProbe:就绪性探测.判断p ...
- [转]JavaScript
javascript 1. oncontextmenu="window.event.returnValue=false" 将彻底屏蔽鼠标右键 <table border on ...
- input光标位置
兼容谷歌火狐-input光标位置 input框在没有添加任何效果的情况下,输入文字后光标始终在最后的位置,谷歌||火狐效果一样 但是在给input加入点击事件后 谷歌:input框插入文字后,光标会自 ...