You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. 
Write a program that: 
reads the number of intervals, their end points and integers c1, ..., cn from the standard input, 
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n, 
writes the answer to the standard output. 

Input

The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.

Output

The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.

Sample Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

Sample Output

6

题意:给定X轴上一些区间[ai,bi],其间至少有ci个点,求X轴上至少多少个点。

思路:记得高中是用bellman-ford优化到了NKOJ的第一名。。。。但是差不多搞忘差分约束了。所以现在再来整理总结一下。

此处求最小,显然需要构造T>=S+dist,然后用最长路求。 由于是点段,处理区间最好半开半闭。

#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
const int inf=0x7fffffff;
int cnt,n,Max,Min;
int Laxt[maxn],Next[maxn],To[maxn],Len[maxn];
int times[maxn],st[maxn],vis[maxn],inq[maxn];
void update()
{
cnt=;Min=inf;Max=-inf;
memset(Laxt,,sizeof(Laxt));
memset(vis,,sizeof(vis));
memset(inq,,sizeof(inq));
}
void add(int u,int v,int d)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
Len[cnt]=d;
}
bool spfa()
{
for(int i=Min-;i<=Max+;i++) st[i]=-inf;
queue<int>q;
q.push(Min); st[Min]=; inq[Min]=;
while(!q.empty()){
int u=q.front(); q.pop(); inq[u]=;
for(int i=Laxt[u];i;i=Next[i]){
int v=To[i];
if(st[v]<st[u]+Len[i]){
st[v]=st[u]+Len[i];
if(!inq[v]){
inq[v]=; vis[v]++; q.push(v);
//if(vis[v]>Max-Min) return false;
}
}
}
} return true;
}
int main()
{
int a,b,c;
while(~scanf("%d",&n)){
update();
for(int i=;i<=n;i++) {
scanf("%d%d%d",&a,&b,&c);
a++;b++;
if(b>Max) Max=b;
if(a-<Min) Min=a-1;
add(a-,b,c);
}
for(int i=Min;i<Max;i++) add(i+,i,-),add(i,i+,);
spfa();
printf("%d\n",st[Max]);
} return ;
}

POJ1201 Intervals (差分约束)的更多相关文章

  1. POJ1201 Intervals(差分约束)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 28416   Accepted: 10966 Description You ...

  2. poj1201 Intervals——差分约束

    题目:http://poj.org/problem?id=1201 差分约束裸题: 设 s[i] 表示到 i 选了数的个数前缀和: 根据题意,可以建立以下三个限制关系: s[bi] >= s[a ...

  3. hdu 1384 Intervals (差分约束)

    Intervals Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  4. poj 1716 Integer Intervals (差分约束 或 贪心)

    Integer Intervals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12192   Accepted: 514 ...

  5. zoj 1508 Intervals (差分约束)

    Intervals Time Limit: 10 Seconds      Memory Limit: 32768 KB You are given n closed, integer interva ...

  6. poj 1201 Intervals(差分约束)

    题目:http://poj.org/problem?id=1201 题意:给定n组数据,每组有ai,bi,ci,要求在区间[ai,bi]内至少找ci个数, 并使得找的数字组成的数组Z的长度最小. #i ...

  7. poj 1201 Intervals——差分约束裸题

    题目:http://poj.org/problem?id=1201 差分约束裸套路:前缀和 本题可以不把源点向每个点连一条0的边,可以直接把0点作为源点.这样会快许多! 可能是因为 i-1 向 i 都 ...

  8. POJ1201基础差分约束

    题意:       有一条直线,直线上做多有50000个点,然后给你组关系 a b c表明a-b之间最少有c个点,问直线上最少多少个点. 思路:        a-b最少有c个点可以想象a到b+1的距 ...

  9. poj1201/zoj1508/hdu1384 Intervals(差分约束)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Intervals Time Limit: 10 Seconds      Mem ...

  10. POJ1201 Intervals差分约束系统(最短路)

    Description You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. Write a p ...

随机推荐

  1. 快讯 | FireEye在GitHub上开源密码破解工具GoCrack

    近日,FireEye 开源了一款密码破解工具 GoCrack,可在多机器上部署破解任务. GoCrack 是由 FireEye’s Innovation and Custom Engineering ...

  2. iOS绘图—— UIBezierPath 和 Core Graphics

    前言 iOS系统本身提供了两套绘图的框架,即UIBezierPath 和 Core Graphics.而前者所属UIKit,其实是对Core Graphics框架关于path的进一步封装,所以使用起来 ...

  3. 自定义PropertyGrid控件【转】

    自定义PropertyGrid控件 这篇随笔其实是从别人博客上载录的.感觉很有价值,整理了一下放在了我自己的博客上,希望原作者不要介意. 可自定义PropertyGrid控件的属性.也可将属性名称显示 ...

  4. Oracle对没有主键的表分页

    普通情况对于有主键,能够做唯一表识的表.我们能够利用主键和rownum配合实现.比如: select scott.emp.* from scott.emp left join (select empn ...

  5. go mysql dsn

    https://github.com/go-sql-driver/mysql#dsn-data-source-name DSN (Data Source Name) The Data Source N ...

  6. python(1)- 初识python

    一.了解编程语言 1.编程语言的定义 编程语言即语言,语言的本质就是沟通,因而编程语言与英语 .法语.日语等所有语言并无区别,只不过英语是人与人之间沟通的介质,而编程语言则是程序员与计算机沟通的介质. ...

  7. 批量杀死mysql进程

    http://www.chengyongxu.com/blog/%E6%89%B9%E9%87%8F%E6%9D%80%E6%AD%BBmysql%E8%BF%9B%E7%A8%8B/

  8. http 错误代码一览表

    http协议一些常见的状态码为: 1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态代码. 代码 说明 100 (继续) 请求者应当继续提出请求. 服务器返回此代码表示已收到请求的第一部分 ...

  9. POJ 1141 Brackets Sequence (区间DP)

    Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...

  10. Java EJB JBoss

    JBoss:JBoss是web服务器的一种,主要做EJB容器,和tomcat集成就可以jsp,servlet,ejb通吃了JBoss有两种版本,一种是独立的,一种是和tomcat集成的,当然都是免费的 ...