bzoj 4589 Hard Nim —— FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589
先手必败,是一开始所有石子的异或和为0;
生成函数 (xpri[1] + xpri[2] + ... + xpri[k])n,pri[k] <= m
FWT求解即可;
而且不要快速幂里面每次变换来变换去的,只有快速幂前后需要变换。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=(<<),mod=1e9+;
int n,m,a[xn],b[xn],lim,inv,cnt,pri[xn];
bool vis[xn];
void init()
{
int mx=xn-;
for(int i=;i<=mx;i++)
{
if(!vis[i])pri[++cnt]=i;
for(int j=;j<=cnt&&(ll)i*pri[j]<=mx;j++)
{
vis[i*pri[j]]=;
if(i%pri[j]==)break;
}
}
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
ll pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
void fwt(int *a,int tp)
{
for(int mid=;mid<lim;mid<<=)
for(int j=,len=(mid<<);j<lim;j+=len)
for(int k=;k<mid;k++)
{
int x=a[j+k],y=a[j+mid+k];
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
if(tp==-)a[j+k]=(ll)a[j+k]*inv%mod,a[j+mid+k]=(ll)a[j+mid+k]*inv%mod;
}
}
int main()
{
inv=pw(,mod-); init();
while(scanf("%d%d",&n,&m)==)
{
memset(a,,sizeof a);
for(int i=;i<=m;i++)if(!vis[i])a[i]=;
memset(b,,sizeof b); b[]=;
lim=; while(lim<=m)lim<<=;
fwt(a,); fwt(b,);
for(;n;n>>=)
{
if(n&)for(int i=;i<lim;i++)b[i]=(ll)a[i]*b[i]%mod;
for(int i=;i<lim;i++)a[i]=(ll)a[i]*a[i]%mod;
}
fwt(b,-);
printf("%d\n",b[]);
}
return ;
}
bzoj 4589 Hard Nim —— FWT的更多相关文章
- bzoj 4589 Hard Nim——FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 一开始异或和为0的话先手必败.有 n 堆,每堆可以填那些数,求最后异或和为0的方案数, ...
- BZOJ.4589.Hard Nim(FWT)
题目链接 FWT 题意即,从所有小于\(m\)的质数中,选出\(n\)个数,使它们异或和为\(0\)的方案数. 令\(G(x)=[x是质数]\),其实就是对\(G(x)\)做\(n\)次异或卷积后得到 ...
- BZOJ 4589 Hard Nim ——FWT
[题目分析] 位运算下的卷积问题. FWT直接做. 但还是不太民白,发明者要承担泽任的. [代码] #include <cstdio> #include <cstring> # ...
- FWT [BZOJ 4589:Hard Nim]
4589: Hard Nim Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 275 Solved: 152[Submit][Status][Disc ...
- BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...
- BZOJ 4589 Hard Nim(FWT加速DP)
题目链接 Hard Nim 设$f[i][j]$表示前$i$个数结束后异或和为$j$的方案数 那么$f[i][j] = f[i-1][j$ $\hat{}$ $k]$,满足$k$为不大于$m$的质数 ...
- bzoj 4589: Hard Nim【线性筛+FWT+快速幂】
T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...
- [BZOJ 4589]Hard Nim
Description 题库链接 两人玩 \(nim\) 游戏,\(n\) 堆石子,每堆石子初始数量是不超过 \(m\) 的质数,那么后手必胜的方案有多少种.对 \(10^9+7\) 取模. \(1\ ...
- bzoj 4589 FWT
#include<bits/stdc++.h> #define ll long long using namespace std; ; ; ; ; <<],b[<< ...
随机推荐
- nodejs 打印机打印 pos打印
https://www.npmjs.com/package/chn-escpos 安装window vsbuild 编译工具 npm install --global --production win ...
- Go Programming Blueprints 读书笔记(谈到了nsq/mgo处理数据持久化,可是业务逻辑不够复杂)
Go Programming Blueprints http.Handle("/", &templateHandler{filename: "chat.html& ...
- 关于在 C#中无法静态库引用的解决方法
在VS中用C#写了个类库,后面想转成静态库发现没有直接的方法,原来在C++中可以,而C#中不支持. 但是有时候程序引用C#编写的动态库觉得用户体验不好太累赘,想要简单只发一个exe可执行程序给用户就好 ...
- C#中??和?分别是什么意思? 在ASP.NET开发中一些单词的标准缩写 C#SESSION丢失问题的解决办法 在C#中INTERFACE与ABSTRACT CLASS的区别 SQL命令语句小技巧 JQUERY判断CHECKBOX是否选中三种方法 JS中!=、==、!==、===的用法和区别 在对象比较中,对象相等和对象一致分别指的是什么?
C#中??和?分别是什么意思? 在C#中??和?分别是什么意思? 1. 可空类型修饰符(?):引用类型可以使用空引用表示一个不存在的值,而值类型通常不能表示为空.例如:string str=null; ...
- javascript 高级编程系列 - 继承
1. 原型链继承 (缺点:子类继承父类的引用类型的属性值会在各个实例中共享,创建子类实例时无法向父类构造函数传递参数) // 定义父类构造函数 function SuperClass(father, ...
- git clean
使用git clean清除未加入版控的数据 作者:Level Up 发布日期:2012-12-21 10:48:10 笔者在使用版本控制软件时,不知为何常常会有些暂存的数据产生.像是下面 ...
- windows下搭建hadoopproject(一)
这里是接着之前的一篇 <hadoop在windows下的环境搭建 >来的~~~ 一.安装文件准备 1:下载好hadoop-1.0.0.tar.gz, 下载地址是https://archiv ...
- Spark SQL之External DataSource外部数据源(二)源代码分析
上周Spark1.2刚公布,周末在家没事,把这个特性给了解一下,顺便分析下源代码,看一看这个特性是怎样设计及实现的. /** Spark SQL源代码分析系列文章*/ (Ps: External Da ...
- MySQL-怎样使update操作sleep一段时间
)) a on mytest.id=a.id set mytest.name='xiaowang';
- Android 向右滑动销毁(finish)Activity, 随着手势的滑动而滑动的效果
http://blog.csdn.net/xiaanming/article/details/20934541