题目链接:https://vjudge.net/problem/LightOJ-1274

1274 - Beating the Dataset
Time Limit: 4 second(s) Memory Limit: 32 MB

You are in a contest, and unfortunately you don't have much time. You have one problem in hand; you just glanced at the sample output and found that it just wants 'YES' or 'NO'. So, you have made another plan instead of solving the problem as you know the system very well.

For this problem, every test case is stored in a separate file. When a submission is found, the system successively runs the solution on all tests of a problem, and for each test the checking process goes as follows. The input is copied to the file input.txt. Then the solution is launched. It reads the input from the file input.txt and writes the result to the file output.txt. When it finishes, the correct answer is copied to the file answer.txt. If the contents of the files answer.txt and output.txt match, the test is assumed to be passed; otherwise, the test is not passed.

So, you decided to write a program that would operate as follows. If the folder containing the program doesn't contain the file answer.txt (i.e. the program is run on the first test), then the program outputs "YES". Otherwise, the program outputs the contents of the file answer.txt. And before the contest, the sizes of the data files are given to you.

And it's clear that the size of the file with the answer "YES" is 3 bytes, the size of the file with the answer "NO" is 2 bytes, and all the variants of the order of tests are equally probable. Now you want to calculate the average number of tests that your solution won't pass.

Input

Input starts with an integer T (≤ 10), denoting the number of test cases.

Each case starts with a line containing two integers n (1 ≤ n ≤ 5000) and s (2n ≤ s ≤ 3n) where n denotes the number of data sets and s denotes the total size of the answer files.

Output

For each case, print the case number and the average number of tests your solution won't pass. Error less than 10-6 will be ignored.

Sample Input

Output for Sample Input

4

3 7

1 2

1 3

4 10

Case 1: 2

Case 2: 1

Case 3: 0

Case 4: 2.5000000000

Note

For the first case, one of the three answers is "YES" and two answers are "NO". If the order of tests is "YES-NO-NO", then your solution won't pass the second test only; if the order is "NO-YES-NO", then it will pass none of the tests; if the order is "NO-NO-YES", the solution won't pass the first and the third tests.

题意:

是一个人做ACM题,这道题的数据的字节数和提问数已经给出,答案只有YES或NO。那个人做不来这道题,只能蒙,一开始一定蒙YES,数据会告诉你这题的正确答案,之后下一题用上一题的正确答案蒙,求蒙错的数据组数的期望数量。

题解:

1.可知:

yes + no = n

3*yes + 2*no = s

因此可以联立解出yes、no的个数。

2.dp[i][j][isYes]:处理到第i个位置,前面已经有j个yes,并且第i个是yes\no时(0代表yes)的情况下,后面错误次数的期望值。

3.可知第i+1个位置出现yes的概率为:py = (yes-j)/(n-i),no的概率为:pw = (no-(i-j))/(n-i)。

3.1 当j+1<=yes时,即还可以放yes,那么:

  dp[i][j][0] = py*dp[i+1][j+1][0] + pw*(dp[i+1][j][1]+1);
  dp[i][j][1] = py*(dp[i+1][j+1][0]+1) + pw*dp[i+1][j][1];

3.2 当j==yes时,即yes已经放完了,那么后面只能放no:

  dp[i][j][0] = pw*(dp[i+1][j][1]+1);
  dp[i][j][1] = pw*dp[i+1][j][1];

4.由于数组太大,所以要用滚动数组。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 5e3+; double dp[][MAXN][];
int main()
{
int T, kase = ;
scanf("%d", &T);
while(T--)
{
int n, s;
scanf("%d%d", &n, &s);
int yes = s - *n;
int no = *n - s;
dp[n%][yes][] = dp[n%][yes][] = ;
for(int i = n-; i>=; i--)
{
int now = i%, nex = (i+)%;
int minYes = max(,i-no), maxYes = min(i,yes);
for(int j = minYes; j<=maxYes; j++)
{
double py = 1.0*(yes-j)/(n-i);
double pw = 1.0*(no-(i-j))/(n-i);
if(j+<=yes)
{
dp[now][j][] = py*dp[nex][j+][] + pw*(dp[nex][j][]+);
dp[now][j][] = py*(dp[nex][j+][]+) + pw*dp[nex][j][];
}
else
{
dp[now][j][] = pw*(dp[nex][j][]+);
dp[now][j][] = pw*dp[nex][j][];
}
}
}
printf("Case %d: %.10lf\n", ++kase, dp[][][]);
}
}

LightOJ - 1274 Beating the Dataset —— 期望的更多相关文章

  1. 【非原创】LightOJ-1274 Beating the Dataset【期望dp】

    学习博客:戳这里

  2. LightOJ 1030 Discovering Gold(期望)

    Description You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell o ...

  3. LightOj:1030-Discovering Gold(期望dp模板)

    传送门:http://www.lightoj.com/volume_showproblem.php?problem=1030 Discovering Gold Time Limit: 2 second ...

  4. LightOJ 1030 Discovering Gold (概率/期望DP)

    题目链接:LightOJ - 1030 Description You are in a cave, a long cave! The cave can be represented by a \(1 ...

  5. LightOJ 1287 Where to Run(期望)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1287 题意:给定一个n个点的无向图(0到n-1),你开始在0.你开始遍历这个图 ...

  6. LightOj_1274 Beating the Dataset

    题目链接 题意: 给一个文档, 这个文档由yes .no 组成, 共有s个byte, 共有n个yes.no. 假设yes的个数为yes_num, no的个数为no_num. 将这n个数进行排列, 对于 ...

  7. LightOJ 1030 Discovering Gold (期望)

    https://vjudge.net/problem/LightOJ-1030 题意: 在一个1×N的格子里,每个格子都有相应的金币数,走到相应格子的话,就会得到该格子的金币. 现在从1格子开始,每次 ...

  8. LightOJ - 1287 Where to Run —— 期望、状压DP

    题目链接:https://vjudge.net/problem/LightOJ-1287 1287 - Where to Run    PDF (English) Statistics Forum T ...

  9. LightOJ - 1027 A Dangerous Maze —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1027 1027 - A Dangerous Maze    PDF (English) Statistics For ...

随机推荐

  1. Linux下的定时任务Crontab

    通过crontab -e写入定时任务的指令,一行为一项任务. 任务模式是时间克龙表达式+命令形式. 如: 2 0,6,12,18 * * * perl /root/restarttomcat.pl p ...

  2. Solidworks如何开启自动求解

    1 我打开了一个DWG格式的文件,提示草图太大,关闭的自动求解(就是没法撤销了)   2 工具-草图设定-自动求解   3 随便做一个标注,然后发现撤销按钮可以使用了,点击之后也的确可以撤销刚才的操作 ...

  3. java web邮件收发

    1.网上方法要导入两个包 mail.jar&activation.jar package com.zjh.shopping.util; import java.util.Date; impor ...

  4. SharePoint 的PowerShell命令之获取所有网站模版

    Get-SPWebTemplate | select Name, Title

  5. 百度Echart3

    由于项目需要在首页搞一个订单数量的走势图,经过多方查找,体验,感觉ECharts不错,封装的很细,我们只需要看自己需要那种类型的图表,搞定好自己的json数据就OK.至于说如何体现出来,官网的教程很详 ...

  6. TextView上的文字逐渐变淡直到消失

    给TextView加个动画效果,完了在个动画加个监听,里面有个动画执行完调用的方法在方法里面把TextView设置为gone,我觉得你直接加这个动画效果之后他就会不显示了,其实他还在那占有位置呢.想不 ...

  7. GenericServlet 、Servlet和httpServler他们之间的关系

    1.GenericServlet类是所有Servlet类的祖先类. 2.HttpServlet类继承了GenericServlet类. 3.Servlet有两个非常重要的的对象,可以说是java we ...

  8. java 中 wait和notify的用法

    package com.test; public class OutputThread { public static Object lockObj=new Object(); public stat ...

  9. 深入浅出Attribute(三)

    约定: 1.”attribute”和”attributes”均不翻译 2.”property”译为“属性” 3.msdn中的原句不翻译 4.”program entity”译为”语言元素” Attri ...

  10. centos安装python3.7.0过程记录

    参考自这里,整理出以下步骤. 一.下载python3.7.0包地址:https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz 二.安装 登陆Li ...