传送门

所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了……

首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号

边的期望次数是多少呢?可以先算出点的概率

$p(u,v)=\frac{p[u]}{d[u]}+\frac{p[v]}{d[v]}$

$p[u]$表示经过这个点的期望次数,$d[u]$表示这个点的度数

那么点的期望次数怎么求?

$p[u]=\sum_{(u,v)\in E}\frac{p[v]}{d[v]}$

然后发现这玩意儿会产生环,因为一个点的期望次数需要由它周围的点推出,他周围的点又需要它推出

那么我们考虑列方程,用高斯消元求解

代码如下

for(int i=;i<n;++i){
f[i][i]=1.0;
for(int j=head[i];j;j=Next[j])
if(ver[j]!=n)
f[i][ver[j]]=-/d[ver[j]];
}
f[][n]=;

其中$f[i][j]$表示从$j$转移到$i$的期望次数

这个方程实际上是$这个点的期望次数*1-所有相邻的点转移过来的期望次数=0$

然后因为一开始在第一个点,所以第一个点必定到,设为$f[1][n]=1$

 //minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while((ch=getc())>''||ch<'')
(ch=='-')&&(flag=true);
for(res=num;(ch=getc())<=''&&ch>='';res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;const double eps=1e-;
int ver[N*N*],Next[N*N*],from[N*N*],to[N*N*],head[N],tot,n,m;
double d[N],f[N][N],ans[N],sum,E[N*N*];
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
void gauss(){
for(int i=;i<n;++i){
int k=i;
for(int j=i+;j<n;++j)
if(fabs(f[k][i])<fabs(f[j][i])) k=j;
if(k!=i) swap(f[i],f[k]);
double div=f[i][i];
for(int j=i;j<=n;++j) f[i][j]/=div;
for(int j=i+;j<n;++j){
double t=f[j][i];
for(int k=;k<n+;++k)
f[j][k]-=t*f[i][k];
}
}
for(int i=n-;i;--i){
for(int j=i+;j<n;++j)
f[i][n]-=f[i][j]*ans[j];
ans[i]=f[i][n]/f[i][i];
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=,u,v;i<=m;++i){
u=read(),v=read();add(u,v),add(v,u);
d[u]+=,d[v]+=;
from[i]=u,to[i]=v;
}
for(int i=;i<n;++i){
f[i][i]=1.0;
for(int j=head[i];j;j=Next[j])
if(ver[j]!=n)
f[i][ver[j]]=-/d[ver[j]];
}
f[][n]=;
gauss();
for(int i=;i<=m;++i)
E[i]=ans[from[i]]/d[from[i]]+ans[to[i]]/d[to[i]];
sort(E+,E++m);
for(int i=;i<=m;++i) sum+=E[i]*(m-i+1.0);
printf("%.3lf\n",sum);
return ;
}

洛谷P3232 [HNOI2013]游走(高斯消元+期望)的更多相关文章

  1. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  2. 洛谷P3232[HNOI2013]游走

    有一个无向简单连通图,顶点从 \(1\) 编号到 \(n\),边从 \(1\) 编号到 \(m\) 小Z在该图上进行随机游走,初始时小Z在\(1\)号顶点,每一步小Z以相等的概率随机选 择当前顶点的某 ...

  3. [bzoj3143] [洛谷P3232] [HNOI2013] 游走

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  4. 洛谷 P3232 [HNOI2013]游走

    链接: P3232 题意: 和上次考试 T4 的简化且无修改一样,经典图上高斯消元求期望. 分析: 要求出每个点的期望出发次数 \(f_i\),每个点度数为 \(d_i\),有 \[f1=\sum\d ...

  5. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  6. Luogu3232 HNOI2013 游走 高斯消元、期望、贪心

    传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...

  7. BZOJ3143:[HNOI2013]游走(高斯消元)

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  8. 洛谷P2973 [USACO10HOL]赶小猪(高斯消元 期望)

    题意 题目链接 Sol 设\(f[i]\)表示炸弹到达\(i\)这个点的概率,转移的时候考虑从哪个点转移而来 \(f[i] = \sum_{\frac{f(j) * (1 - \frac{p}{q}) ...

  9. 洛谷3317 SDOI2014重建(高斯消元+期望)

    qwq 一开始想了个错的做法. 哎 直接开始说比较正确的做法吧. 首先我们考虑题目的\(ans\)该怎么去求 我们令\(x\)表示原图中的某一条边 \[ans = \sum \prod_{x\in t ...

随机推荐

  1. ideal 控制台乱码 解决

    run config  中 tomcat VM options中填入一下命令 -Dfile.encoding=UTF-8

  2. 数据结构之 图论---最小生成树(prim + kruskal)

    图结构练习——最小生成树 Time Limit: 1000MS Memory limit: 65536K 题目描述  有n个城市,其中有些城市之间可以修建公路,修建不同的公路费用是不同的.现在我们想知 ...

  3. Codeforces Round #401 (Div. 2) D Cloud of Hashtags —— 字符串

    题目链接:http://codeforces.com/contest/777/problem/D 题解: 题意:给出n行字符串,对其进行字典序剪辑.我自己的想法是正向剪辑的,即先对第一第二个字符串进行 ...

  4. linux从用户组中删除某用户

    1. 从wheel组中删除 test用户 gpasswd wheel -d test 2. 给 目录赋予 其他组上传文件的权限 chmod a+w test

  5. codeforces B. Convex Shape 解题报告

    题目链接:http://codeforces.com/problemset/problem/275/B 题目内容:给出一个n * m 大小的grid,上面只有 black 和 white 两种颜色填充 ...

  6. suishou

    sageException: Write operations are not allowed in read-only mode (FlushMode.NEVER/MANUAL): Turn you ...

  7. js获取浏览器宽高、网页宽高、屏幕宽高、鼠标位置等(带图片说明)

    网页可见区域宽: document.body.clientWidth;网页可见区域高: document.body.clientHeight;(点击查看大图) 网页可见区域宽: document.bo ...

  8. 动态链接库的ELF头分析

    ELF(Executable and Linking Format)用于存储Linux程序. ELF文件分三种类型: 1.目标文件(通常是.o); 2.可执行文件(我们的运行文件)   3.动态库(. ...

  9. Swift Optional Chaining

    Optional Chaining介绍 关于「optional chaining」,<The Swift Programming Language>是这么描述的: Optional cha ...

  10. Subset Sums

    链接 分析:dp[i][j]表示前i个数能够组成j的对数,可得dp[i][j]=dp[i-1][j]+dp[i-1][j-i],所以最后dp[n][sum/2]既是所求 /* PROB:subset ...