传送门

首先,如果\(f(x)=1\),那么根据二项式定理,有\(Q(f,n,k)=1\)

当\(f(x)=x\)的时候,有$$Q=\sum_{i=0}^ni\times \frac{n!}{i!(n-i)!}ki(1-k){n-i}$$

\[Q=\sum_{i=0}^nnk\times \frac{(n-1)!}{(i-1)!(n-i)!}k^{i-1}(1-k)^{n-i}
\]

\[Q=nk\sum_{i=0}^n\frac{(n-1)!}{(i-1)!(n-i)!}k^{i-1}(1-k)^{n-i}
\]

\[Q=nk\sum_{i=0}^n{n-1\choose i-1}k^{i-1}(1-k)^{n-i}
\]

根据二项式定理后面的等于\(1\),所以\(Q=nk\)

然后我们发现,如果\(f(x)=x^{\underline{d}}\),则有\(Q=n^{\underline{d}}k^d\),其中\(x^{\underline{d}}\)是\(x\)的\(d\)次下降幂,为\(x(x-1)...(x-d+1)\),证明和上面的差不多当

\[Q=\sum_{i=0}^ni^{\underline{d}}\times \frac{n!}{i!(n-i)!}k^i(1-k)^{n-i}
\]

\[Q=\sum_{i=0}^nn^{\underline{d}}x^d\times \frac{(n-d)!}{(i-d)!(n-i)!}k^{i-d}(1-k)^{n-i}
\]

\[Q=n^{\underline{d}}k^d\sum_{i=0}^n \frac{(n-d)!}{(i-d)!(n-i)!}k^{i-d}(1-k)^{n-i}
\]

\[Q=n^{\underline{d}}k^d\sum_{i=0}^n{n-d\choose i-d}k^{i-d}(1-k)^{n-i}
\]

后面那个还是等于\(1\)

根据乘法分配律,如果\(f(x)=\sum_{i=0}^m a_ix^{\underline{i}}\),那么\(Q(f,n,x)=\sum_{i=0}^m a_i\times Q(x^{\underline{i}},n,k)\)

考虑如何计算\(a_i\),记\(b_i=\frac{a_i}{i!}\),那么\(f(x)=\sum_{i=0}^m b_i\frac{x^{\underline{i}}}{i!}=\sum_{i=0}^m b_i{x\choose i}\)

不要忘了我们已知\(x=0,1,...,m\)时\(f(x)\)的值

当\(x=0\)时,\(f(x)=b_0\)

记\(\triangle f(x)=f(x+1)-f(x)\),即一阶差分,因为\({x+1\choose i}-{x\choose i}={x\choose i-1}\),所有\(\triangle f(x)=\sum_{i=1}^m b_i{x\choose i-1}\),那么\(\triangle f(0)=b_1\)

同理,\(\triangle^kf(0)=b_k\),即\(k\)阶差分后\(0\)处的值为\(b_k\)

因为std写的是\(O(m^2)\)的我们不能辜负出题人的一片好心,所以直接\(O(m^2)\)暴力就好了(据说这里可以用$FFT优化然而懒了233)

然后没有然后了

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=2e4+5,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int b[N],n,m,k,ans,p=1;
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read(),k=read();
fp(i,0,m)b[i]=read();
fp(i,0,m){
ans=add(ans,mul(p,b[0]));
fp(j,0,m-i-1)b[j]=dec(b[j+1],b[j]);
p=1ll*p*k%P*(n-i)%P*ksm(i+1,P-2)%P;
}printf("%d\n",ans);
return 0;
}

uoj#269. 【清华集训2016】如何优雅地求和(数论)的更多相关文章

  1. [清华集训2016]如何优雅地求和——NTT

    题目链接: [清华集训2016]如何优雅地求和 题目大意:给出一个多项式$m+1$个点值$a_{0},a_{1}...a_{m}$(其中$f(i)=a_{i}$),并给出两个数$n,x$,求$Q(f, ...

  2. 洛谷 P6667 - [清华集训2016] 如何优雅地求和(下降幂多项式,多项式)

    题面传送门 wjz:<如何优雅地 AK NOI> 我:如何优雅地爆零 首先,按照这题总结出来的一个小套路,看到多项式与组合数结合的题,可以考虑将普通多项式转为下降幂多项式,因为下降幂和组合 ...

  3. UOJ269 清华集训2016 如何优雅地求和 下降幂多项式、NTT

    代码 神仙题? 看到连续的点值,那么一定是要利用到连续点值的性质,可以考虑下降幂多项式,即考虑多项式\(F(x) = \sum\limits_{i=0}^m a_ix^{\underline i}\) ...

  4. [UOJ#274][清华集训2016]温暖会指引我们前行

    [UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...

  5. BZOJ 4732 UOJ #268 [清华集训2016]数据交互 (树链剖分、线段树)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4732 (UOJ) http://uoj.ac/problem/268 题解 ...

  6. [UOJ#276][清华集训2016]汽水[分数规划+点分治]

    题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq ...

  7. UOJ #269. 【清华集训2016】如何优雅地求和

    UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x ...

  8. UOJ 275. 【清华集训2016】组合数问题

    UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...

  9. [UOJ#276]【清华集训2016】汽水

    [UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...

  10. UOJ #274. 【清华集训2016】温暖会指引我们前行 [lct]

    #274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #incl ...

随机推荐

  1. 从 Spring Cloud 看一个微服务框架的「五脏六腑」(转)

    Spring Cloud 是一个基于 Spring Boot 实现的微服务框架,它包含了实现微服务架构所需的各种组件. 本文将从 Spring Cloud 出发,分两小节讲述微服务框架的「五脏六腑」: ...

  2. UniGui的信息弹出框MessageDlg自定义标题的方法(使用JS动态本地化文本)

    UniGui的信息弹出框MessageDlg的原型定义如下: procedure MessageDlg(const Msg: string; DlgType: TMsgDlgType; Buttons ...

  3. 20170313 ABAP以jason 格式返回值到http(接口内容返回)

     问题1: 返回jason 格式信息给你们这步不通, 这个可以怎么处理, ***得到SCP 系统开发回复,他们需要调整方法: (1)调用函数做RETURN, IT_ZSMLSCPNOTICE-FUNC ...

  4. linux source命令与sh shell scripts的区别

    source FileName 作用:在当前bash环境下读取并执行FileName中的命令. 注:该命令通常用命令“.”来替代. 如:source .bash_rc 与 . .bash_rc 是等效 ...

  5. Codeforces696 Round #362 (Div. 1)(vp) A~D题解

    很久没有打比赛了,内部模拟赛天天垫底,第一次vp之旅又是和**一样,这样下去GDOI之后直接退役算了 整场都在忘开LL A. Lorenzo Von Matterhorn 这个题一看我就想直接虚树+树 ...

  6. VK Cup 2012 Qualification Round 1 E. Phone Talks —— DP

    题目链接:http://codeforces.com/contest/158/problem/E E. Phone Talks time limit per test 3 seconds memory ...

  7. CSU - 1803 —— 数学题

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1803 Description  给出正整数 n 和 m,统计满足以下条件的正整数对 ...

  8. 《数学之美》第15章 矩阵计算和文本处理中两个分类问题——SVD分解的应用

    转载请注明原地址:http://www.cnblogs.com/connorzx/p/4170047.html 提出原因 基于余弦定理对文本和词汇的处理需要迭代的次数太多(具体见14章笔记),为了找到 ...

  9. codeforces B. Ping-Pong (Easy Version) 解题报告

    题目链接:http://codeforces.com/problemset/problem/320/B 题目意思:有两种操作:"1 x y"  (x < y) 和 " ...

  10. YCSB-mapkeer-leveldb实测

    使用thrift0.8.0编译好java版的mapkeeper并安装到ycsb下,使用thrift0.9.2编译好c++版的mapkeeper并编译leveldb客户端运行. 测试成功.recordc ...