tf.pad()
说一下我理解的tf.pad()
,先来看一下定义:
def pad(tensor, paddings, mode="CONSTANT", name=None, constant_values=0):
什么意思呢?目的就是对输入tensor
进行扩展,那么扩展的宽度就由paddings
来控制了;至于mode
和constant_values
则表示对tensor
扩展时填充的方式。
一维tensor扩展:
import tensorflow as tf
tensor = tf.constant([[1, 2, 3]])
paddings = tf.constant([[1, 2], [3, 4]])
result = tf.pad(tensor, paddings)
with tf.Session() as sess:
print(sess.run(result))
[[0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 2 3 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]]
从输出结果可以看出,对一维矩阵[[1, 2, 3]]
(其实还是二维的)四个方向进行扩展,paddings=[[1, 2], [3, 4]]
分别就对应着上、下、左、右四个边界扩展的宽度;
二维tensor扩展:
import tensorflow as tf
tensor = tf.constant([[1, 2], [3, 4]])
paddings = tf.constant([[1, 2], [3, 4]])
result = tf.pad(tensor, paddings)
with tf.Session() as sess:
print(sess.run(result))
[[0 0 0 0 0 0 0 0 0]
[0 0 0 1 2 0 0 0 0]
[0 0 0 3 4 0 0 0 0]
[0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0]]
同上;
三维tensor扩展:
import tensorflow as tf
tensor = tf.constant([[[1, 2, 3], [3, 4, 5]], [[5, 6, 7], [7, 8, 9]]]) # shape: (2, 2, 3)
paddings = tf.constant([[1, 2], [3, 4], [5, 6]])
result = tf.pad(tensor, paddings)
with tf.Session() as sess:
print(tensor.shape) # shape: (2, 2, 3)
print(sess.run(result))
print(result.shape) # shape: (5, 9, 14)
输出结果如下:
paddings
是一个\(3\times 2\)的矩阵,第一行[1, 2]
表示对tensor
的第一个维度进行扩展;第二行[3, 4]
对tensor
的第二个维度进行扩展;第三行[5, 6]
对tensor
的第三个维度进行扩展;
可以看到,paddings
的要求都是\(N\times 2\)的矩阵,其中\(N\)可能就是与tensor的维度相关了吧。
[[[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]]
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 2 3 0 0 0 0 0 0]
[0 0 0 0 0 3 4 5 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]]
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 5 6 7 0 0 0 0 0 0]
[0 0 0 0 0 7 8 9 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]]
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]]
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0]]]
参数mode
tf.pad()
方法提供了三种填充tensor
的方式:
mode="CONSTNAT", constant_values=0
: 默认,以常数值0来填充;mode="REFLECT"
mode="SYMMETRIC"
不同mode
对tensor
的shape有着不同的要求。
tf.pad()的更多相关文章
- tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT')
tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT') tf.pad 是扩展的意思,其中[0, 0], [1, 0] 分别代表的是[上, ...
- tensorflow 笔记 16:tf.pad
函数: tf.compat.v1.pad tf.pad 函数表达式如下: tf.pad( tensor, paddings, mode='CONSTANT', name=Non ...
- 『TensorFlow』pad图片
tf.pad()文档如下, pad(tensor, paddings, mode='CONSTANT', name=None, constant_values=0) Pads a tensor. ...
- 解释张量及TF的一些API
张量的定义 张量(Tensor)理论是数学的一个分支学科,在力学中有重要应用.张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具.张 ...
- 【学习笔记】tensorflow基础
目录 认识Tensorflow Tensorflow特点 下载以及安装 Tensorflow初体验 Tensorflow进阶 图 op 会话 Feed操作 张量 变量 可视化学习Tensorboard ...
- Self-organizing Maps及其改进算法Neural gas聚类在异常进程事件识别可行性初探
catalogue . SOM简介 . SOM模型在应用中的设计细节 . SOM功能分析 . Self-Organizing Maps with TensorFlow . SOM在异常进程事件中自动分 ...
- 第三十六节,目标检测之yolo源码解析
在一个月前,我就已经介绍了yolo目标检测的原理,后来也把tensorflow实现代码仔细看了一遍.但是由于这个暑假事情比较大,就一直搁浅了下来,趁今天有时间,就把源码解析一下.关于yolo目标检测的 ...
- 第七节,TensorFlow编程基础案例-TensorBoard以及常用函数、共享变量、图操作(下)
这一节主要来介绍TesorFlow的可视化工具TensorBoard,以及TensorFlow基础类型定义.函数操作,后面又介绍到了共享变量和图操作. 一 TesnorBoard可视化操作 Tenso ...
- 『TensorFlow』读书笔记_ResNet_V2
『PyTorch × TensorFlow』第十七弹_ResNet快速实现 要点 神经网络逐层加深有Degradiation问题,准确率先上升到饱和,再加深会下降,这不是过拟合,是测试集和训练集同时下 ...
随机推荐
- Ubuntu12.04如何修改窗口背景色为眼睛保护色来保护眼睛,强力推荐!!
最近突然发现盯着屏幕看的久了,眼睛会非常的痛苦,因此想改变一下系统的窗口背景颜色.其实看代码主要是在Eclipse里面察看,因此一开始我就想改变Eclipse的文本编辑框的背景颜色,效果如下图所示. ...
- SSH Tunnel扫盲(ssh port forwarding端口转发)
SSH的的Port Forward,中文可以称为端口转发,是SSH的一项非常重要的功能.它可以建立一条安全的SSH通道,并把任意的TCP连接放到这条通道中.下面仔细就仔细讨论SSH的这种非常有用的功能 ...
- dojo 官方翻译 dojo/_base/lang 版本1.10
官方地址:http://dojotoolkit.org/reference-guide/1.10/dojo/_base/lang.html#dojo-base-lang 应用加载声明: require ...
- :style动态设置属性
前段时间做页面时需要动态设置背景图片,每一种框架都会遇见类似的需求,特记录下来,以免不时之需: <!DOCTYPE html> <html> <head> < ...
- Spring Boot2.0之 原理—创建内置Tomcat容器
前面所述的https://www.cnblogs.com/toov5/p/9823728.html 中的第一条先不赘述了,就是玩了maven 重点介绍后两条 首先内置Tomcat: SpringBoo ...
- html(HyperText Markup Language)--超文本标记语言
1.html的简介? * 什么是html? ** HyperText Markup Language:超文本标记语言,网页语言 ** 超文本:超出文本的范畴,使用html可以轻松实现这样操作: ** ...
- Centos7 安装lnmp
Centos7 安装lnmp 1.下载 wget http://soft.vpser.net/lnmp/lnmp1.5-full.tar.gz 2.解压 tar -zvxf lnmp1.5-full. ...
- linux下MySQL5.6安装记录
MySQL下载地址: ftp://mirror.switch.ch/mirror/mysql/Downloads/MySQL-5.6/http://mirrors.sohu.com/mysql/ ...
- python-多线程2-线程同步
线程同步: 一个场景: 一个列表里所有元素都是0,线程A从后向前把所有元素改成1,而线程B负责从前往后读取列表并打印. 那么,可能线程A开始改的时候,线程B便来打印列表了,输出就变成一半0一半1,这就 ...
- 1>/dev/null 2>&1 & 意思解析
原文:https://jingyan.baidu.com/article/6dad5075334e26a123e36e31.html 用 /dev/null 2>&1 这样的写法.这条命 ...